Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Ibrahim M Adham x
Clear All Modify Search
Free access

Priyadharsini Raju, Gunsmaa Nyamsuren, Manar Elkenani, Aleksandra Kata, Erdenechimeg Tsagaan, Wolfgang Engel and Ibrahim M Adham

Pelota (Pelo) is an evolutionarily conserved gene, and its deficiency in Drosophila affects both male and female fertility. In mice, genetic ablation of Pelo leads to embryonic lethality at the early implantation stage as a result of the impaired development of extra-embryonic endoderm (ExEn). To define the consequences of Pelo deletion on male germ cells, we temporally induced deletion of the gene at both embryonic and postnatal stages. Deletion of Pelo in adult mice resulted in a complete loss of whole-germ cell lineages after 45 days of deletion. The absence of newly emerging spermatogenic cycles in mutants confirmed that spermatogonial stem cells (SSCs) were unable to maintain spermatogenesis in the absence of PELO protein. However, germ cells beyond the undifferentiated SSC stage were capable of completing spermatogenesis and producing spermatozoa, even in the absence of PELO. Following the deletion of Pelo during embryonic development, we found that although PELO is dispensable for maintaining gonocytes, it is necessary for the transition of gonocytes to SSCs. Immunohistological and protein analyses revealed the attenuation of FOXO1 transcriptional activity, which induces the expression of many SSC self-renewal genes. The decreased transcriptional activity of FOXO1 in mutant testes was due to enhanced activity of the PI3K/AKT signaling pathway, which led to phosphorylation and cytoplasmic sequestration of FOXO1. These results suggest that PELO negatively regulates the PI3K/AKT pathway and that the enhanced activity of PI3K/AKT and subsequent FOXO1 inhibition are responsible for the impaired development of SSCs in mutant testes.

Free access

Pawel Grzmil, Maria E Altmann, Ibrahim M Adham, Ulrike Engel, Hubertus Jarry, Stefan Schweyer, Stephan Wolf, Johanna Mänz and Wolfgang Engel

The ubiquitination process is indispensable for proteome regulation. Three classes of ubiquitin (Ub)-related proteins can be distinguished: E1, E2 and E3. Proteins from the E2 class are responsible for the transfer of Ubls from E1 to the target protein. For this activity, interaction with class E3 ligases is usually required. Ub-conjugating enzyme E2Q 1 (UBE2Q1) belongs to the E2 class of Ub-related enzymes and is demonstrated to be involved in the regulation of membrane B4GALT1 protein. Here, we demonstrate that human UBE2Q1 and mouse Ube2q1 are widely expressed and highly conserved genes. To elucidate the function of UBE2Q1 protein, we generated knockout mouse model. No overt phenotype was detected in UBE2Q1-deficient males, but in mutant females, pleiotropic reproductive defects were observed including altered oestrus cycle, abnormal sexual behaviour and reduced offspring care. Moreover, in the uterus of mutant females, significantly increased embryonic lethality and decreased implantation capacity of homozygous mutant embryos were noticed. We found that Ube2q1 is not expressed in the uterus of non-pregnant females but its expression is up-regulated during pregnancy. Taken together, Ube2q1 is involved in different aspects of female fertility.

Free access

Torsten Held, Amal Z Barakat, Belal A Mohamed, Ilona Paprotta, Andreas Meinhardt, Wolfgang Engel and Ibrahim M Adham

Heat-shock protein 110 (HSP110) family members act as nucleotide exchange factors (NEF) of mammalian and yeast HSP70 chaperones during the ATP hydrolysis cycle. In this study, we describe the expression pattern of murine HSPA4, a member of the HSP110 family, during testis development and the consequence of HSPA4 deficiency on male fertility. HSPA4 is ubiquitously expressed in all the examined tissues. During prenatal and postnatal development of gonad, HSPA4 is expressed in both somatic and germ cells; however, expression was much higher in germ cells of prenatal gonads. Analyses of Hspa4-deficient mice revealed that all homozygous mice on the hybrid C57BL/6J×129/Sv genetic background were apparently healthy. Although HSPA4 is expressed as early as E13.5 in male gonad, a lack of histological differences between Hspa4 −/− and control littermates suggests that Hspa4 deficiency does not impair the gonocytes or their development to spermatogonia. Remarkably, an increased number of the Hspa4-deficient males displayed impaired fertility, whereas females were fertile. The total number of spermatozoa and their motility were drastically reduced in infertile Hspa4-deficient mice compared with wild-type littermates. The majority of pachytene spermatocytes in the juvenile Hspa4 −/− mice failed to complete the first meiotic prophase and became apoptotic. Furthermore, down-regulation of transcription levels of genes known to be expressed in spermatocytes at late stages of prophase I and post-meiotic spermatids leads to suggest that the development of most spermatogenic cells is arrested at late stages of meiotic prophase I. These results provide evidence that HSPA4 is required for normal spermatogenesis.