Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Isabelle Dufort x
Clear All Modify Search
Free access

Maud Vallée, Isabelle Dufort, Stéphanie Desrosiers, Aurélie Labbe, Catherine Gravel, Isabelle Gilbert, Claude Robert and Marc-André Sirard

Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

Restricted access

Isabelle Hue, Isabelle Dufort, Anaïs Vitorino Carvalho, Denis Laloe, Nathalie Peynot, Severine A Degrelle, Christoph Viebahn and Marc-Andre Sirard

Embryo transfer in cattle is performed with blastocysts produced in vivo or in vitro using defined media. However, outdated systems such as those that use serum and co-culture remain of interest for research purposes. Here, we investigated the effect of additional culture time on in vitro-produced embryos. Specifically, we compared embryos that formed a blastocoel at different times after fertilisation to those that stayed in culture for up to two additional days with respect to their development in vivo after temporary transfer to oestrus-synchronised recipients. A pre-transfer set (D6, D6+1, D6+2, D7, D7+1, D8) was examined using microarray analyses, and correlated with a post-transfer set that included two different days of transfer (D6-T6, D6+2-T8, D7+1-T8, D8-T8). All surviving conceptuses reached primitive-streak stages and filamentous sizes similarly to in vivo (D18) or in vitro controls (D7/T7). The recovery rate differed between D6 and D8 embryos that were immediately transferred (58% vs 25%). With an intermediate survival rate (33%), the D6 embryos with two additional days in culture produced 9 times more IFN-tau at D18 than the D6 embryos that were immediately transferred. At the end of culture, D6 and D6+2 embryos displayed the highest number of gene expression differences. Despite a mortality of 40-60%, no signature was detectable in any of the transferred groups that would account for the embryos’ fates. Initially reputed to be beneficial in producing more blastocysts our culture system of B2 medium plus serum and co-culture generated blastocysts that were distinct from those developed in vivo (D7).

Free access

Daulat Raheem Khan, Éric Fournier, Isabelle Dufort, François J Richard, Jaswant Singh and Marc-André Sirard


Folliculogenesis involves coordinated profound changes in different follicular compartments and significant modifications of their gene expression patterns, particularly in granulosa cells. Huge datasets have accumulated from the analyses of granulosa cell transcriptomic signatures in predefined physiological contexts using different technological platforms. However, no comprehensive overview of folliculogenesis is available. This would require integration of datasets from numerous individual studies. A prerequisite for such integration would be the use of comparable platforms and experimental conditions. The EmbryoGENE program was created to study bovine granulosa cell transcriptomics under different physiological conditions using the same platform. Based on the data thus generated so far, we present here an interactive web interface called GranulosaIMAGE (Integrative Meta-Analysis of Gene Expression), which provides dynamic expression profiles of any gene of interest and all isoforms thereof in granulosa cells at different stages of folliculogenesis. GranulosaIMAGE features two kinds of expression profiles: gene expression kinetics during bovine folliculogenesis from small (6 mm) to pre-ovulatory follicles under different hormonal and physiological conditions and expression profiles of granulosa cells of dominant follicles from post-partum cows in different metabolic states. This article provides selected examples of expression patterns along with suggestions for users to access and generate their own patterns using GranulosaIMAGE. The possibility of analysing gene expression dynamics during the late stages of folliculogenesis in a mono-ovulatory species such as bovine should provide a new and enriched perspective on ovarian physiology.