Search Results

You are looking at 1 - 1 of 1 items for

  • Author: J. Charlery x
Clear All Modify Search
Free access

P. Humblot, S. Camous, J. Martal, J. Charlery, N. Jeanguyot, M. Thibier and R. G. Sasser

Summary. Pregnancy-specific protein B (PSPB) and progesterone concentrations were determined by RIAs in venous plasma during early pregnancy after 177 artificial inseminations (AI) performed in 76 cows and 71 heifers. The females were bled at 24, 26, 30–35 days and ∼ 70 days (for non-returns to oestrus) after AI. In non-pregnant females without extended CL maintenance (progesterone < 1·5 ng/ml on Day 24) and or showing a normal time of return to oestrus (Group 1, N = 63), PSPB concentrations were undetectable whatever the stage after AI except in 2 cows. In pregnant animals (N = 83; Group 2) progesterone concentrations were > 10 ng/ml from Day 24 to the time of rectal palpation and PSPB concentrations rose continuously from 0·42 ± 0·07 (s.e.m.) ng/ml (Day 24) to 4·06 ± 0·3 ng/ml (time of rectal palpation). No coefficient of correlation between PSPB and progesterone concentrations was significant whatever the day of gestation studied. In cows with extended luteal function and subsequently found to be non-pregnant (late embryonic mortality) PSPB was undetectable (N = 21; Group 3) or detectable (N = 10; Group 4) at Days 24, 26 and/or 30–35 of pregnancy. At 24 and 26 days after AI progesterone concentrations were intermediate between those of Groups 1 and 2. At Day 24 females of Group 4 had higher progesterone concentrations than those of Group 3 (P < 0·05), but no differences between these two groups existed at subsequent stages after AI. Animals of Group 4 had lower PSBP concentrations than those of Group 2 between Days 24 and 30–35 (P < 0·025) but at the time of rectal palpation PSPB values fell to undetectable levels in all but 1 cow of Group 4. We conclude that (1) most pregnancy failures in cows are due to nonfertilization or early embryonic death and if AI is performed after 70 days post partum >95% of these females have no detectable PSPB concentrations; (2) peripheral progesterone concentrations are lower at Days 24–26 after AI in cows with late embryonic mortality than in pregnant cows; (3) only 30% of non-pregnant females with extended luteal function (late embryonic mortality) have detectable PSPB levels which are lower than in pregnant cows; and (4) in pregnant animals there is no correlation between PSPB and progesterone concentrations. This suggests that under physiological conditions PSPB has no major effect on progesterone production or vice versa.

Keywords: PSPB; progesterone; pregnancy; embryonic death; cow