Search Results

You are looking at 1 - 10 of 11 items for

  • Author: Jing Xu x
  • All content x
Clear All Modify Search
Free access

Jing Wang, Fan Wu, Qingzhen Xie, Xiaorui Liu, Fuju Tian, Wangming Xu, and Jing Yang

Bacteria and viruses activate the host innate immune response via Toll-like receptor (TLR)-involved signaling and potentially cause pregnancy failure. TLR7 and TLR9 respond to single-stranded RNA (a viral intermediate) and hypomethylated CpG DNA motifs (specific molecular constituents of bacteria) respectively. In this study, we treated murine RAW264.7 cells with R837, CpG1826, or a combination of the two. RT-PCR was performed to detect cytokines, Tlr7, and Tlr9. WT and nonobese diabetic murine embryo resorption models were established by i.p. injections of TLR7 and TLR9 ligands. Neutralizing antibodies and the IL1β and TNFα inhibitors were used. The specific inhibitors anakinra and etanercept effectively prevented TLR7 and TLR9 ligand-induced embryo loss. Notably, this effect was not observed in decidual NK cell-depleted mice. Our findings suggest that anakinra and etanercept may have potential for preventing TLR7 or TLR9 ligand-induced abortion in the presence of decidual NK cells.

Free access

Fuhua Xu, Shally Wolf, O'ryai Green, and Jing Xu

Vitamin D (VD) is a secosteroid hormone synthesized predominantly in the skin upon UV light exposure, which can also be obtained from dietary sources. In target cells, the bioactive VD binds to specific VD receptor to regulate downstream transcription of genes that are involved in a wide range of cellular processes. There is an increasing recognition that the proper physiological levels of VD are critical for optimizing reproductive potential in women. The direct VD action in the ovary was first suggested in the 1980s. Since then, research has attempted to determine the role of VD in follicular development and oocyte maturation in animal models and clinical settings. However, data published to date are inconclusive due to the complexity in VD metabolism and the fact that VD actions are pervasive in regulating physiological functions in various systems, including the reproductive, endocrine and nervous systems that control reproduction. This review summaries in vitro, in vivo, and clinical evidence regarding VD metabolism and signaling in the ovary, as well as VD-regulated or VD-associated ovarian follicular development, steroidogenic function, and oocyte maturation. It is suggested that adequate animal models are needed for well-controlled studies to unravel molecular mechanisms of VD action in the ovary. For clinical studies, follicular development and function may be evaluated more effectively in a relatively homogeneous patient population under a well-controlled experimental design. A comprehensive understanding of VD-regulated folliculogenesis and oogenesis will provide critical insight into the impact of VD in female reproductive health.

Free access

Jian-Jun Chang, Jing-Pian Peng, Ying Yang, Jing-Ling Wang, and Li Xu

Partial cDNA sequence coding for Microtus brandti radde (Brandt’s vole) testes-specific lactate dehydrogenase (brLDH-C4) was amplified by reverse transcription-polymerase chain reaction (RT-PCR). By inserting the product into the eukaryotic expression vector pCR3.1, pCR3.1-brLDH-C4′ was obtained as the prototype of contraceptive DNA vaccine. Immunization with pCR3.1-brLDH-C4′ in BALB/c mice generated antibodies specific to purified brLDH-C4′ and native mouse LDH-C4 protein. The birth rate of the pCR3.1-brLDH-C4′ immunized mice was found to be decreased significantly (80% lower than that of those immunized with pCR3.1). Functions of the elicited antibodies in sera from pCR3.1-brLDH-C4′ inoculated mice were further explored. The results indicated that the antibodies from the mice injected with pCR3.1-brLDH-C4′ could cause the agglutination of normal sperm suspension, while the ovarian structure and the development of ovarian follicles of these mice were not impaired, which gives a possible explanation for the immunocontraceptive effects of the pCR3.1-brLDH-C4′ DNA vaccine.

Free access

Hong-Fei Xia, Jing-Li Cao, Xiao-Hua Jin, and Xu Ma

MiR199a was found to be differentially expressed in rat uteri between the prereceptive and receptive phase via microRNA (miRNA) microarray analysis in our previous study. However, the role of miR199a in rat embryo implantation remained unknown. In the study, northern blot results showed that the expression levels of miR199a were higher on gestation days 5 and 6 (g.d.5–6) in rat uteri than on g.d.3–4 and g.d.7–8. In situ localization of miR199a in rat uteri showed that miR199a was mainly localized in the stroma or decidua. The expression of miR199a was not significantly different in the uteri of pseudopregnant rats and evidently increased in the uteri of rats subjected to activation of delayed implantation and experimentally induced decidualization. Treatment with 17β-estradiol or both 17β-estradiol and progesterone significantly diminished miR199a levels. Gain of function of miR199a in endometrial stromal cells isolated from rat uteri inhibited cell proliferation and promoted cell apoptosis. Loss of function of miR199a displayed opposite roles on cell proliferation and apoptosis. Further investigation uncovered a significant inverse association between the expression of miR199a and growth factor receptor-bound protein 10 (Grb10), an imprinted gene, and miR199a could bind to the 3′UTR of Grb10 to inhibit Grb10 translation. In addition, in vivo analysis found that the immunostaining of GRB10 was attenuated in the stroma or decidua from g.d.4 to 6, contrary to the enhancement of miR199a. Collectively, upregulation of miR199a in rat uterus during the receptive phase is regulated by blastocyst activation and uterine decidualization. Enforced miR199a expression suppresses cell proliferation partially through targeting Grb10.

Free access

Xu-Jing Geng, Dong-Mei Zhao, Gen-Hong Mao, and Li Tan

Leydig cells are essential for male reproductive development throughout life. Production of androgens as well as intermediate steroids is tightly regulated. Although microRNAs (miRNAs) are suggested to play important roles in spermatogenesis, little is currently known regarding the regulation of steroidogenesis by miRNAs in Leydig cells. Here, we found that miR-150 was predominantly expressed in Leydig cells within mouse testis. Therefore, we determined steroidogenesis of the Leydig cells in which miR-150 was knocked down or overexpressed using miR-150 antagomir and agomir, respectively. Compared with negative control group, a significant increase of STAR expression was observed in miR-150 antagomir-treated Leydig cells. Conversely, STAR expression was significantly reduced in miR-150 agomir-transfected Leydig cells. Production of sex-steroid precursors and testosterone of Leydig cells was also negatively controlled by miR-150. We further identified Star as a target of miR-150 using luciferase reporter assay. Finally, we confirmed that miR-150 was necessary for steroidogenesis and spermatogenesis in vivo via intratesticular injection of miR-150 antagomir or agomir. Taken together, our studies suggest that miR-150 negatively regulates the expression of STAR and steroidogenesis of Leydig cells in mice.

Free access

Xing Su, Yi Hu, Ying Li, Jing-Li Cao, Xue-Qin Wang, Xu Ma, and Hong-Fei Xia

Although the relationship between polymorphisms in microRNAs (miRNAs) and recurrent pregnancy loss (RPL) has been studied, there is very little data available in the literature. In the present study, we scanned 55 potentially functional polymorphisms in the miRNA coding region in Chinese women with unexplained RPL (URPL; no. 2011-10). The rs6505162 C>A in the MIR423 coding region was found to be significantly associated with the occurrence of human URPL. The rare A allele contributed to an increase in the expression of mature MIR423. C to A substitution in the polymorphism rs6505162 in pre-MIR423 repressed cell proliferation and migratory capacity. Further investigations showed that MIR 423 could inversely regulate the expression of proliferation-associated 2 group 4 (PA2G4) by binding the 3′-UTR of PA2G4. Dual-luciferase assay indicated that the A allele in the polymorphism rs6505162 could more effectively suppress the expression of PA2G4 than the C allele could. Collectively, the present data suggest that rs6505162 C>A in pre-MIR423 may contribute to the genetic predisposition to RPL by disrupting the production of mature MIR42 3 and its target gene, which consequently interferes with MIR423 functioning.

Free access

Yali Xu, Yong Fan, Weimin Fan, Jia Jing, Ke Xue, Xing Zhang, Bin Ye, Yingjie Ji, Yue Liu, and Zhide Ding

Asthenozoospermia is one of the leading causes of male infertility owing to a decline in sperm motility. Herein, we determined if there is a correlation between RNASET2 content on human spermatozoa and sperm motility in 205 semen samples from both asthenozoospermia patients and normozoospermia individuals. RNASET2 content was higher in sperm from asthenozoospermia patients than in normozoospermia individuals. On the other hand, its content was inversely correlated with sperm motility as well as progressive motility. Moreover, the inhibitory effect of RNASET2 on sperm motility was induced by incubating normozoospermic sperm with RNase T2 protein. Such treatment caused significant declines in intracellular spermatozoa PKA activity, PI3K activity and calcium level, which resulted in severely impaired sperm motility, and the sperm motility was largely rescued by cAMP supplementation. Finally, protein immunoprecipitation and mass spectrometry identified proteins whose interactions with RNASET2 were associated with declines in human spermatozoa motility. AKAP4, a protein regulating PKA activity, coimmunoprecipated with RNASET2 and they colocalized with one another in the sperm tail, which might contribute to reduced sperm motility. Thus, RNASET2 may be a novel biomarker of asthenozoospermia. Increases in RNASET2 can interact with AKAP4 in human sperm tail and subsequently reduce sperm motility by suppressing PKA/PI3K/calcium signaling pathways.

Free access

Jing Xu, Marcelo P Bernuci, Maralee S Lawson, Richard R Yeoman, Thomas E Fisher, Mary B Zelinski, and Richard L Stouffer

A three-dimensional culture system supports the development of primate preantral follicles to the antral stage with appreciable steroid production. This study assessed i) whether in vitro developmental competence of follicles is age dependent, ii) the role of gonadotropins and insulin in supporting folliculogenesis, and iii) anti-Müllerian hormone (AMH) and vascular endothelial growth factor (VEGF) production by growing follicles. Ovaries were obtained from prepubertal, young, and older adult rhesus macaques. Secondary follicles were encapsulated into alginate beads and cultured individually for 40 days in media containing 0.05 or 5 μg/ml insulin, with or without recombinant human (rh) FSH (500 mIU/ml). No follicles survived in the culture without rhFSH. In the presence of rhFSH, survival was lower for follicles from older animals, whereas growth, i.e. follicle diameter, was less by day 40 for follicles from prepubertal animals. The surviving follicles were categorized as no-grow (NG; ≤250 μm), slow-grow (SG; 250–500 μm), and fast-grow (FG; ≥500 μm) according to their diameters. SG follicles cultured with 5 μg/ml insulin produced more ovarian steroids than those cultured with 0.05 μg/ml insulin by week 5. SG and FG follicles produced more AMH and VEGF than the NG, and levels peaked at weeks 2 and 5 respectively. After 100 ng/ml rh chorionic gonadotropin treatment for 34 h, more healthy oocytes were retrieved from young adults whose follicles were cultured with 5 μg/ml insulin. This culture system offers an opportunity to characterize the endocrine and paracrine function of primate follicles that influence follicle growth and oocyte maturation.

Free access

Meng-Ling Liu, Jing-Lei Wang, Jie Wei, Lin-Lin Xu, Mei Yu, Xiao-Mei Liu, Wen-Li Ruan, and Jia-Xiang Chen

Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis.

Free access

Irene Ruiz-González, Jing Xu, Xiaoqiu Wang, Robert C Burghardt, Kathrin A Dunlap, and Fuller W Bazer

Conceptus–endometrial communication during the peri-implantation period of pregnancy ensures establishment of pregnancy. We hypothesized that this dialog involves exosomes, ovine endogenous jaagsiekte retroviruses (enJSRV) and toll-like receptors (TLR) which regulate the secretion of interferon tau (IFNT), the pregnancy recognition signal in ruminants. First, exosomes isolated from uterine flushings from cyclic and pregnant ewes were analyzed for exosomal content and uterine expression of heat shock protein 70 (HSC70). Then, conceptus trophectoderm cells (oTr1) treated with different doses of exosomes were analyzed for the expression of genes involved in TLR-mediated cell signaling. The results revealed that exosomes contain mRNAs for enJSRV-ENV, HSC70, interleukins, and interferon (IFN)-regulatory factors. Exosomal content of enJSRV-ENV mRNA and protein decreased from days 10 and 12 to day 16 of gestation, and uterine expression of HSC70 increased in pregnant ewes compared with cyclic ewes. The oTr1 cells proliferated and secreted IFNT in a dose-dependent manner in response to exosomes from cyclic ewes. The expression of CD14, CD68, IRAK1, TRAF6, IRF6, and IRF7 mRNAs that are key to TLR-mediated expression of type 1 IFNs was significantly influenced by day of pregnancy. This study demonstrated that exosomes are liberated into the uterine lumen during the estrous cycle and early pregnancy; however, in pregnant ewes, exosomes stimulate trophectoderm cells to proliferate and secrete IFNT coordinately with regulation of TLR-mediated cell signaling. These results support our hypothesis that free and/or exosomal enJSRV act on the trophectoderm via TLR to induce the secretion of IFNT in a manner similar to that for innate immune responses of macrophages and plasmacytoid dendritic cells to viral pathogens.