Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Jock K Findlay x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Davina A Cossigny, Jock K Findlay, and Ann E Drummond

Numerous studies have reported on the roles of activins in gonadal regulation; however, little is known about their specific roles in early folliculogenesis. Ovarian follicular growth was investigated in 10-day cultures of day 4 postnatal whole ovaries treated with activin A (ActA; 50 ng/ml), with or without FSH (100 ng/ml) in vitro. We hypothesized that treatment with ActA±FSH would affect rates of growth and atresia in follicles. None of the treatments affected primordial follicle activation, and antral follicles were not observed after 10 days in culture. Primordial follicle numbers from all treatment groups were ∼20% of those in day 4 fresh ovaries, indicating that activation had occurred. In the presence of ActA, preantral follicle numbers increased significantly (P<0.0001). ActA alone decreased the proportion of atretic follicles in the primary and preantral classes, whereas the combined treatment of ActA+FSH increased the proportion of atretic preantral oocytes. Real-time PCR analysis revealed that follistatin, FSH receptor, and activin βA and βB subunits were all expressed at significantly higher levels in the ActA-only treated group but not in the ActA+FSH group. Here, we report novel findings supporting the role of FSH in primordial follicle survival through an action on apoptosis and a stimulatory role of ActA in the primordial to primary and preantral stages of follicle development, suggesting an inhibitory action of activin on oocyte apoptosis.

Free access

Jock K Findlay, Michael K Holland, and Bob B M Wong

Reproductive sciences have made major contributions to human health, livestock production and environmental management in the past and will continue to do so in future. In collaboration with other disciplines, reproductive scientists can provide scientifically valid information that will allow the rational development of policies on topics such as declining fertility in men and women, livestock breeding efficiencies, climate change, pest animal control, wildlife management and environmental influences. It is imperative that the reproductive sciences are recognised by the community and policy makers as important contributors to future health and welfare of animals, humans and the planet if these potential benefits are to be captured and utilised. Reproductive Health Australia (RHA) was launched recently to advocate for reproductive biology as a national health, economic and social priority. This short review provides a snapshot of why it is imperative that reproductive science receives the recognition that is due to it and provides examples of how it can contribute to the future of the planet.

Free access

Rebecca L Jones, Chelsea Stoikos, Jock K Findlay, and Lois A Salamonsen

Transforming growth factor β (TGFβ) superfamily members are closely associated with tissue remodelling events and reproductive processes. This review summarises the current state of knowledge regarding the expression and actions of TGFβ superfamily members in the uterus, during the menstrual cycle and establishment of pregnancy. TGFβs and activin β subunits are abundantly expressed in the endometrium, where roles in preparation events for implantation have been delineated, particularly in promoting decidualisation of endometrial stroma. These growth factors are also expressed by epithelial glands and secreted into uterine fluid, where interactions with preimplantation embryos are anticipated. Knockout models and embryo culture experiments implicate activins, TGFβs, nodal and bone morphogenetic proteins (BMPs) in promoting pre- and post-implantation embryo development. TGFβ superfamily members may therefore be important in the maternal support of embryo development. Following implantation, invasion of the decidua by fetal trophoblasts is tightly modulated. Activin promotes, whilst TGFβ and macrophage inhibitory cytokine-1 (MIC-1) inhibit, trophoblast migration in vitro, suggesting the relative balance of TGFβ superfamily members participate in modulating the extent of decidual invasion. Activins and TGFβs have similar opposing actions in regulating placental hormone production. Inhibins and activins are produced by the placenta throughout pregnancy, and have explored as a potential markers in maternal serum for pregnancy and placental pathologies, including miscarriage, Down’s syndrome and pre-eclampsia. Finally, additional roles in immunomodulation at the materno-fetal interface, and in endometrial inflammatory events associated with menstruation and repair, are discussed.

Free access

R John Aitken, Jock K Findlay, Karla J Hutt, and Jeff B Kerr

Apoptosis is a critical process for regulating both the size and the quality of the male and female germ lines. In this review, we examine the importance of this process during embryonic development in establishing the pool of spermatogonial stem cells and primordial follicles that will ultimately define male and female fertility. We also consider the importance of apoptosis in controlling the number and quality of germ cells that eventually determine reproductive success. The biochemical details of the apoptotic process as it affects germ cells in the mature gonad still await resolution, as do the stimuli that persuade these cells to commit to a pathway that leads to cell death. Our ability to understand and ultimately control the reproductive potential of male and female mammals depends upon a deeper understanding of these fundamental processes.

Free access

Rebecca L Jones, Tu’uhevaha J Kaitu’u-Lino, Guiying Nie, L Gabriel Sanchez-Partida, Jock K Findlay, and Lois A Salamonsen

Maternal–fetal communications are critical for the establishment of pregnancy. Embryonic growth and differentiation factors produced by the oviduct and uterus play essential roles during the pre- and early post-implantation phases. Although several studies indicate roles for activin in embryonic development, gene-knockout studies have failed to identify a critical role in mammalian embryogenesis. We hypothesized that activin is produced by maternal tissues during the establishment of pregnancy, and thus maternally derived activin could compensate for the absence of embryonic activin in null homozygotes during critical developmental stages. We investigated the expression of inhibin α, activin βA, and βB subunits in the mouse oviduct and uterus during the estrous cycle and early pregnancy, and in the early conceptus. Inhibin α subunit was weakly expressed, while activin βA and βB subunits were strongly expressed in oviduct and uterus at estrous, and dramatically upregulated in the uterus on each day of pregnancy between days 3.5 and 8.5 post coitum. Prior to implantation, activin βA and βB subunits were immunolocalized to oviductal and uterine epithelial cells; following implantation they were expressed in the stroma, in a wave preceding decidualization. Later in pregnancy, activin βA and βB subunits were present in decidua basalis, trophoblast giant cells, and labyrinth zone of the developing placenta. Expression of activin βA subunit was also detected in blastocysts and early post-implantation embryos. These data are consistent with a role for maternally derived activins in the support of the pre-implantation embryo, and during gastrulation and embryogenesis.

Free access

Kavitha Vaithiyanathan, Seng H Liew, Nadeen Zerafa, Thilini Gamage, Michele Cook, Lorraine A O’Reilly, Philippe Bouillet, Clare L Scott, Andreas Strasser, Jock K Findlay, and Karla J Hutt


Apoptosis plays a prominent role during ovarian development by eliminating large numbers of germ cells from the female germ line. However, the precise mechanisms and regulatory proteins involved in germ cell death are yet to be determined. In this study, we characterised the role of the pro-apoptotic BH3-only protein, BCL2-modifying factor (BMF), in germ cell apoptosis in embryonic and neonatal mouse ovaries. BMF protein was immunohistochemically localised to germ cells at embryonic days 15.5 (E15.5) and E17.5 and postnatal day 1 (PN1), coincident with entry into the meiotic prophase, but was undetectable at E13.5, and only present at low levels at PN3 and PN5. Consistent with this expression pattern, loss of BMF in female mice was associated with a decrease in apoptosis at E15.5 and E17.5. Furthermore, increased numbers of germ cells were found in ovaries from Bmf −/− mice compared with WT animals at E15.5 and PN1. However, germ cell numbers were comparable between Bmf −/− and WT ovaries at PN3, PN5 and PN10. Collectively, these data indicate that BMF mediates foetal oocyte loss and its action limits the maximal number of germ cells attained in the developing ovary, but does not influence the number of primordial follicles initially established in ovarian reserve.

Free access

Michelle Myers, F Hamish Morgan, Seng H Liew, Nadeen Zerafa, Thilini Upeksha Gamage, Mai Sarraj, Michele Cook, Ileana Kapic, Antony Sutherland, Clare L Scott, Andreas Strasser, Jock K Findlay, Jeffrey B Kerr, and Karla J Hutt

The number of primordial follicles initially established within the ovary is influenced by the extent of germ cell death during foetal ovarian development, but the mechanisms that mediate this death have not been fully uncovered. In this study, we identified BBC3 (PUMA) (p53 upregulated modulator of apoptosis, also known as BCL2-binding component 3), a pro-apoptotic BH3-only protein belonging to the BCL2 family, as a critical determinant of the number of germ cells during ovarian development. Targeted disruption of the Bbc3 gene revealed a significant increase in the number of germ cells as early as embryonic day 13.5. The number of germ cells remained elevated in Bbc3 −/− female mice compared with WT female mice throughout the remainder of embryonic and early postnatal life, resulting in a 1.9-fold increase in the number of primordial follicles in the ovary on postnatal day 10. The increase in the number of germ cells observed in the ovaries of Bbc3 −/− mice could not be attributed to the altered proliferative activity of germ cells within the ovaries. Furthermore, BBC3 was found to be not required for the massive germ cell loss that occurs during germ cell nest breakdown. Our data indicate that BBC3 is a critical regulator of germ cell death that acts during the migratory phase of oogenesis or very soon after the arrival of germ cells in the gonad and that BBC3-mediated cell death limits the number of primordial follicles established in the initial ovarian reserve.