Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Juho-Antti Mäkelä x
Clear All Modify Search
Free access

Juho-Antti Mäkelä and Robin M Hobbs

The intricate molecular and cellular interactions between spermatogonial stem cells (SSCs) and their cognate niche form the basis for life-long sperm production. To maintain long-term fertility and sustain sufficiently high levels of spermatogenesis, a delicate balance needs to prevail between the different niche factors that control cell fate decisions of SSCs by promoting self-renewal, differentiation priming or spermatogenic commitment of undifferentiated spermatogonia (Aundiff). Previously the SSC niche was thought to be formed primarily by Sertoli cells. However, recent research has indicated that many distinct cell types within the testis contribute to the SSC niche including most somatic cell populations and differentiating germ cells. Moreover, postnatal testis development involves maturation of somatic supporting cell populations and onset of cyclic function of the seminiferous epithelium. The stochastic and flexible behavior of Aundiff further complicates the definition of the SSC niche. Unlike in invertebrate species, providing a simple anatomical description of the SSC niche in the mouse is therefore challenging. Rather, the niche needs to be understood as a dynamic system that is able to serve the long-term reproductive function and maintenance of fertility both under steady-state and during development plus regeneration. Recent data from us and others have also shown that Aundiff reversibly transition between differentiation-primed and self-renewing states based on availability of niche-derived cues. This review focuses on defining the current understanding of the SSC niche and the elements involved in its regulation.

Open access

Juho-Antti Mäkelä, Vuokko Saario, Sonia Bourguiba-Hachemi, Mirja Nurmio, Kirsi Jahnukainen, Martti Parvinen and Jorma Toppari

Hedgehog (Hh) signalling has a crucial role in testis development. Sertoli cell-derived desert hedgehog (DHH) guides the formation of testis cords and differentiation of foetal-type Leydig cells. Dhh mutant mice are infertile due to a block in germ cell differentiation, hypogonadism and hypoandrogenism. Hh signalling pathway components are also expressed in postnatal testis. In the rat testis the transcription factor of the Hh pathway, glioma-associated oncogene homologue (GLI1), is expressed by a wide variety of germ cells. This suggests that Hh signalling is involved in spermatogenesis at many different levels. Our data show that canonical Hh signalling is turned off in early condensing spermatids that strongly express the negative regulator of the pathway, suppressor of fused (SUFU). Most of the Hh pathway specific mRNAs display the highest values in stages II–VI of the rat seminiferous epithelial cycle. The key endocrine regulator of germ cell differentiation, FSH, down-regulates Dhh mRNA levels in vitro. Hh signalling inhibition in vitro leads to massive apoptosis of germ cells. In prepubertal rat testis imatinib mesylate-induced inhibition of tyrosine kinases impinges on Dhh transcript levels and Hh signalling. Our data indicate that Hh signalling is part of the paracrine signalling network in the rat testis. It promotes the survival of germ cells and is suppressed by FSH.