Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Junya Ito x
Clear All Modify Search
Free access

Junya Ito, Natsuko Kawano, Masumi Hirabayashi and Masayuki Shimada

The objective of this study was to investigate the role of calmodulin-dependent protein kinase II (CaMKII) during fertilization in the pig. Since it has been reported that CaMKII is involved in the capacitation and acrosome reaction of spermatozoa, we tested whether supplementation with the CaMKII inhibitor, KN-93, in the fertilization medium affected sperm penetration. The results showed that the addition of KN-93 in the fertilization medium significantly reduced the rate of sperm penetration into oocytes. However, pre-treatment with KN-93 before in vitro fertilization (IVF) did not significantly affect sperm penetration, but it did affect pronuclear formation in a dose-dependent manner. In the oocytes pre-treated with KN-93 before IVF and then co-cultured with spermatozoa without the drug, the decrease in p34cdc2 kinase and the cyclin B1 level were significantly suppressed as compared with those in penetrated oocytes without treatment with KN-93. However, the decrease in MAP kinase activity was not affected by KN-93. Additional treatment with KN-93 after Ca2+ ionophore treatment also inhibited the reduction in p34cdc2 kinase activity and the cyclin B1 level, but not MAP kinase activity. Treatment with KN-92, an inactive KN-93 analogue, did not significantly affect sperm penetration and pronuclear formation. In conclusion, the activation of CaMKII by artificial stimuli or sperm stimulated the disruption of cyclin B1 and the inactivation of p34cdc2 kinase, but did not affect MAP kinase inactivation during oocyte activation in pigs.

Free access

Michiko Nakai, Junya Ito, Ken-ichi Sato, Junko Noguchi, Hiroyuki Kaneko, Naomi Kashiwazaki and Kazuhiro Kikuchi

In pigs, although ICSI is a feasible fertilization technique, its efficiency is low. In general, injected pig sperm are insufficient to induce oocyte activation and embryonic development. Pretreatments for disrupting sperm membranes have been applied to improve the fertility of ICSI oocytes; however, we hypothesize that such pretreatment(s) may reduce the ability of the sperm to induce oocyte activation. We first evaluated the effects of sperm pretreatments (sonication (SO) to isolate the sperm heads from the tails, Triton X-100 (TX), and three cycles of repeated freezing/thawing (3×-FT) for disrupting sperm membranes) on the rate of pronucleus (PN) formation after ICSI. We found that oocytes injected with control (whole) sperm had higher rates of PN formation than those obtained after subjecting the sperm to SO, TX, and 3×-FT. The amounts of phospholipase Cζ (PLCζ), which is thought to be the oocyte-activating factor in mammalian sperm, in sperm treated by each method was significantly lower than that in whole untreated sperm. Furthermore, using immunofluorescence, it was found that in pig sperm, PLCζ was localized to both the post-acrosomal region and the tail area. Thus we demonstrated for the first time that sperm pretreatment leads to a reduction of oocyte-activating capacity. Our data also show that in addition to its expected localization to the sperm head, PLCζ is also localized in the tail of pig sperm, thus raising the possibility that injection of whole sperm may be required to attain successful activation in pigs.

Free access

Michiko Nakai, Hiroyuki Kaneko, Tamas Somfai, Naoki Maedomari, Manabu Ozawa, Junko Noguchi, Junya Ito, Naomi Kashiwazaki and Kazuhiro Kikuchi

Xenografting of testicular tissue into immunodeficient mice is known to be a valuable tool for facilitating the development of immature germ cells present in mammalian gonads. Spermatogenesis in xenografts and/or in vitro embryonic development to the blastocyst stage after ICSI of xenogeneic sperm has already been reported in large animals, including pigs; however, development of the embryos to term has not yet been confirmed. Therefore, in pigs, we evaluated the in vivo developmental ability of oocytes injected after ICSI of xenogeneic sperm. Testicular tissues prepared from neonatal piglets, which contain seminiferous cords consisting of only gonocytes/spermatogonia, were transplanted under the back skin of castrated nude mice. Between 133 and 280 days after xenografting, morphologically normal sperm were recovered, and a single spermatozoon was then injected into an in vitro matured porcine oocyte. After ICSI, the oocytes were electrostimulated and transferred into estrus-synchronized recipients. Two out of 23 recipient gilts gave birth to six piglets. Here, we describe for the first time that oocytes fertilized with a sperm from ectopic xenografts have the ability to develop to viable offspring in large mammals.

Restricted access

Naoki Hirose, Sayaka Wakayama, Rei Inoue, Junya Ito, Masatoshi Ooga and Teruhiko Wakayama

Artificial oocyte activation is important for assisted reproductive technologies, such as fertilization with round spermatids (ROSI) or the production of cloned offspring by somatic cell nuclear transfer (SCNT). Recently, phospholipase Cζ (PLCζ)-cRNA was used to mimic the natural process of fertilization, but this method required the serial injection of PLCζ-cRNA and was found to cause damage to the manipulated oocytes. Here we tried to generate offspring derived from oocytes that were fertilized using round spermatid or somatic cell nuclear transfer with the co-injection of PLCζ-cRNA. After co-injecting round spermatids and 20 ng/µL of PLCζ-cRNA into the oocytes, most of them became activated, but the activation process was delayed by more than 1 h. With the co-injection method, the rate of blastocyst formation in ROSI embryos was higher (64%) compared with that of the serial injection method (55%). On another note, when SCNT was performed using the co-injection method, the cloned offspring were obtained with a higher success rate compared with the serial-injection method. However, in either ROSI or SCNT embryos, the birth rate of offspring via the co-injection method was similar to the Sr activation method. The epigenetic status of ROSI and SCNT zygotes that was examined showed no significant difference among all activation methods. The results indicated that although the PLCζ-cRNA co-injection method did not improve the production rate of offspring, this method simplified oocyte activation with less damage, and with accurate activation time in individual oocytes, it can be useful for the basic study of oocyte activation and development.

Free access

Junya Ito, Masumi Hirabayashi, Megumi Kato, Ayumu Takeuchi, Mayumi Ito, Masayuki Shimada and Shinichi Hochi

The present study was undertaken to clarify the relationship between the p34cdc2 kinase activity of in vitro-aged or enucleated rat oocytes and the premature chromosome condensation (PCC) of microinjected cumulus cell nuclei. Wistar rat oocytes were placed in vitro up to 120 min after the animal was killed. The p34cdc2 kinase activity of the oocytes decreased in a time-dependent manner. The incidence of PCC was higher when nuclear injection into intact oocytes was completed in 15–45 min rather than 46–120 min. When rat oocytes were enucleated for subsequent nuclear injection, the p34cdc2 kinase activity transiently increased soon after enucleation but drastically decreased after 30 min. Removal of the cytoplasm instead of the meta-phase-plate did not affect the p34cdc2 kinase activity even after 60 min. PCC occurred in intact and cytoplasm-removed oocytes but not in enucleated oocytes. In contrast, oocytes from BDF1 mice exhibited a p34cdc2 kinase level twice that of rat oocytes and supported PCC despite enucleation. The p34cdc2 kinase level of intact rat oocytes was reduced to the equivalent level of aged (120 min) or enucleated (+60 min) oocytes by a 45 min treatment with roscovitine, an inhibitor of p34cdc2 kinase. None of the roscovitine-treated oocytes supported PCC while half of the control oocytes did. When rat oocytes were treated with MG132, a proteasome inhibitor, delayed inactivation of the p34cdc2 kinase was observed in the MG132-treated oocytes. A significantly higher proportion of the MG132-treated oocytes supported PCC when compared with the control oocytes. Moreover, a higher proportion of MG132-treated and enucleated oocytes carried two pseudo-pronuclei after cumulus cell injection and developed to the two-cell stage when compared with the enucleated oocytes at the telophase-II stage. These results suggest that the decreased level of p34cdc2 kinase activity in aged or enucleated rat oocytes is responsible for their inability to support PCC of microinjected donor cell nuclei and that inhibition of p34cdc2 kinase inactivation by chemicals such as MG132 is in part effective for rat oocytes to promote PCC and further development.