Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Karin Müller x
Clear All Modify Search
Free access

Anke Kurz, Dagmar Viertel, Andreas Herrmann and Karin Müller

One of the essential properties of mammalian, including sperm, plasma membranes is a stable transversal lipid asymmetry with the aminophospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), typically in the inner, cytoplasmic leaflet. The maintenance of this nonrandom lipid distribution is important for the homeostasis of the cell. To clarify the relevance of lipid asymmetry to sperm function, we have studied the localization of PS in boar sperm cell membranes. By using labeled annexin V as a marker for PS and propidium iodide (PI) as a stain for nonviable cells in conjunction with different methods (flow cytometry, fluorescence and electron microscopy), we have assessed the surface exposure of PS in viable cells during sperm genesis, that is, before and during capacitation as well as after acrosome reaction. An approach was set up to address also the presence of PS in the outer acrosome membrane. The results show that PS is localized in the cytoplasmic leaflet of the plasma membrane as well as on the outer acrosome membrane. Our results further indicate the cytoplasmic localization of PS in the postacrosomal region. During capacitation and acrosome reaction of spermatozoa, PS does not become exposed on the outer surface of the viable cells. Only in a subpopulation of PI-positive sperm cells does PS became accessible upon capacitation. The stable cytoplasmic localization of PS in the plasma membrane, as well as in the outer acrosome membrane, is assumed to be essential for a proper genesis of sperm cells during capacitation and acrosome reaction.

Restricted access

Nicolas J Fasel, Kevin McMillian, Ulrike Jakop, Laurent Méné-Saffrané, Kathrin M Engel, Michel Genoud, Karin Müller and Philippe Christe

Biochemical properties of polyunsaturated fatty acids (PUFAs) are fundamental to sperm movements. Amongst all adjustments operated during epididymal maturation, sperm membrane lipid composition is remodelled. Specifically, the proportion of PUFAs usually increases from the caput towards the cauda epididymidis. In mammals, PUFAs are predominantly acquired through the diet, which can consequently impact male fertility. We aimed at analysing to what extent n-6 and n-3 PUFAs are incorporated into sperm in the Seba’s short-tailed bat (Carollia perspicillata), and at demonstrating the effect of the sperm fatty acid composition on sperm mobility. We therefore provided food varying in fatty acid composition to males of C. perspicillata and measured the fatty acid composition and mobility traits in spermatozoa collected from the caput and cauda epididymides. We found that n-6 and n-3 PUFAs and saturated fatty acids were significantly related to sperm velocity but not to the proportion of progressive sperm (i.e. motility). Concomitant to an increase in sperm velocity, the level of fatty acid saturation increased from the caput to the cauda epididymidis, while the proportion of PUFAs remained similar along the epididymis. A reduction in n-6 PUFAs counterbalanced an increase in n-3 PUFAs. The food treatments did not affect the sperm fatty acid composition. Our results suggest that a precise endogenous control rather than dietary effects determines sperm fatty acid composition in C. perspicillata.