Once interferon-tau (IFNT) had been identified as a type I IFN in sheep and cattle and its functions were characterized, numerous studies were conducted to elucidate the transcriptional regulation of this gene family. Transfection studies performed largely with human choriocarcinoma cell lines identified regulatory regions of the IFNT gene that appeared responsible for trophoblast-specific expression. The key finding was the recognition that the transcription factor ETS2 bound to a proximal region within the 5′UTR of a bovine IFNT and acted as a strong transactivator. Soon after other transcription factors were identified as cooperative partners. The ETS2-binding site and the nearby AP1 site enable response to intracellular signaling from maternal uterine factors. The AP1 site also serves as a GATA-binding site in one of the bovine IFNT genes. The homeobox-containing transcription factor, DLX3, augments IFNT expression combinatorially with ETS2. CDX2 has also been identified as transactivator that binds to a separate site upstream of the main ETS2 enhancer site. CDX2 participates in IFNT epigenetic regulation by modifying histone acetylation status of the gene. The IFNT downregulation at the time of the conceptus attachment to the uterine endometrium appears correlated with the increased EOMES expression and the loss of other transcription coactivators. Altogether, the studies of transcriptional control of IFNT have provided mechanistic evidence of the regulatory framework of trophoblast-specific expression and critical expression pattern for maternal recognition of pregnancy.
Search Results
You are looking at 1 - 7 of 7 items for
- Author: Kazuhiko Imakawa x
- Refine by Access: All content x
Yoshikage Muroi, Toshihiro Sakurai, Akira Hanashi, Kentaro Kubota, Kentaro Nagaoka, and Kazuhiko Imakawa
ERVWE1 (SYNCYTIN-1), a membrane protein originating from the envelope gene of human endogenous retrovirus-W (HERV-W), mediates the fusion of mononucleated cytotrophoblasts into multinucleated syncytiotrophoblast. Though ERVWE1 has been characterized since its discovery, regulatory mechanisms associated with ERVWE1 expression have not been firmly established. We hypothesized that membrane protein CD9, involved in cell–cell fusion of fertilization and myogenesis, could be involved in the regulation of ERVWE1 gene expression. In this study, regulatory mechanisms of ERVWE1 expression were studied using human choriocarcinoma BeWo cells. Forskolin is an activator of adenylate cyclase, which increased CD9 and ERVWE1 expression. The increase in CD9 expression was inhibited by a protein kinase A (PKA) inhibitor, Rp-cAMPS. These results indicate that CD9 expression is regulated by the cAMP/PKA signaling pathway. Overexpression of CD9 increased expression levels of ERVWE1 as well as GCM1 (hGCMa), which is a transcription factor known to activate ERVWE1 gene transcription. However, high ERVWE1 expression induced by CD9 overexpression did not result in the increase in chorionic gonadotropin, beta polypeptide production. Moreover, CD9-induced increase in ERVWE1 and GCM1 expressions were inhibited by Rp-cAMPS. These results suggest that CD9 increases GCM1 expression via the cAMP/PKA signaling pathway, resulting in the increase in ERVWE1 expression.
Sachiko Yamakoshi, Rulan Bai, Takashi Chaen, Atsushi Ideta, Yoshito Aoyagi, Toshihiro Sakurai, Toshihiro Konno, and Kazuhiko Imakawa
In the course of experiments to identify and characterize the factors that function in bovine conceptuses during peri-attachment periods, various transcripts related to the epithelial–mesenchymal transition (EMT) were found. In this study, RNA was extracted from different sets of days 17, 20, and 22 (day 0=day of estrous) bovine conceptuses and subjected to real-time PCR analysis as well as Western blotting, from which abundances of N-cadherin (CDH2), vimentin, matrix metalloproteinase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase) (MMP2), and matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase) (MMP9) mRNAs were determined on day 22, concurrent with (CDH1) mRNA and protein downregulation. Transcription factors in EMT processes were then analyzed and changes in snail homolog 2 (Drosophila) (SNAI), zinc finger E-box binding homeobox 1 (ZEB1), zinc finger E-box binding homeobox 2 (ZEB2), twist homolog 1 (Drosophila) (TWIST1), twist homolog 2 (Drosophila) (TWIST2), and Kruppel-like factor 8 (KLF8) transcripts were found in day 22 conceptuses, while confirming SNAI2 expression by Western blotting. Immunohistochemical analysis revealed that the day 22 trophectoderm expressed the mesenchymal markers N-cadherin and vimentin as well as the epithelial marker cytokeratin. In attempts to identify the molecular mechanisms by which the trophectoderm expressed EMT-related genes, growth factor receptors associated with EMT were analyzed. Upregulation of the growth factor receptor transcripts, fibroblast growth factor receptor 1 (FGFR1), platelet-derived growth factor receptor, alpha polypeptide (PDGFRA), platelet-derived growth factor receptor, beta polypeptide (PDGFRB), and transforming growth factor, beta receptor II (70/80 kDa) (TGFBR2) mRNAs, was found on day 22. The analysis was extended to determine the integrin (ITG) transcripts and found high levels of integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) (ITGA4), integrin, alpha 8 (ITGA8), integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) (ITGB3), and integrin, beta 5 (ITGB5) mRNAs on day 22. These observations indicate that after the conceptus–endometrium attachment, EMT-related transcripts as well as the epithelial marker cytokeratin were present in the bovine trophectoderm and suggest that the implantation process for noninvasive trophoblasts requires not only extracellular matrix expression but also partial EMT.
Keigo Nakamura, Kazuya Kusama, Atsushi Ideta, Kazuhiko Imakawa, and Masatoshi Hori
Extracellular vesicles (EVs) present in uterine lumen are involved in conceptus-endometrial interactions during the pre-implantation period. Despite numerous studies conducted on interferon tau (IFNT), a major protein of maternal recognition of pregnancy, the effect of intrauterine EVs on the endometrium during pre-implantation periods has not been well-characterized. To characterize conceptus-derived intrauterine EVs independent of IFNT, transcripts found from RNA-seq analysis in RNAs extracted from primary bovine endometrial epithelial cells (EECs) treated with cyclic day 17 (C17) EVs, pregnant day 17 (P17) EVs or IFNT were analyzed. These analyses identified 82 transcripts uniquely induced by IFNT-independent P17 EVs, of which a large number of transcripts were associated with ‘the TNF signaling pathway’ and ‘Inflammatory response’. Moreover, high expression of CD40L, a member of the TNF superfamily, and its receptor CD40 were found in P17 EVs and in EECs, respectively. Furthermore, the expression of TNF signaling pathway-related genes was up-regulated by the treatment with P17 EVs, but these increases were down-regulated by NF-kB signaling inhibitor. These findings suggest that P17 EVs could induce a pro-inflammatory response in the endometrium, independent of IFNT, to regulate uterine receptivity, facilitating conceptus implantation.
Yuta Matsuno, Yahia A Amin, Kazuya Kusama, and Kazuhiko Imakawa
In ruminants, various molecules are involved in regulating conceptus attachment and adhesion; however, molecules that maintain the conceptus adhesion have not been well characterized. We hypothesized that conceptus must produce a molecule(s), yet uncharacterized or overlooked, which maintain conceptus adhesion to the uterine epithelium. In this study, we aimed to identify new candidate(s) in conceptus secretory proteins responsible for maintaining conceptus adhesion in sheep. We performed RNA-sequence analysis with ovine conceptuses, followed by endometria obtained from pregnant animals on day 15 (P15: pre-attachment), 17 (P17: right after attachment), and 21 (P21: post-attachment; adhesion) and iTRAQ analysis of uterine flushing on P15 and P17. To identify the proteins secreted from conceptuses, we cross-referenced the transcriptome and proteome data. These analyses identified 16 and 26 proteins as conceptus secretory proteins on P15 and P17, respectively. Gene ontology analysis revealed that the conceptus secretory proteins were enriched in those categorized to fibrinolysis and coagulation. RT-qPCR analysis verified that the expression levels of transcripts in conceptuses encoding coagulation factors, fibrinogen subunits, and fibrinolysis factors were significantly higher on P21 than on P15 or P17, which were supported by those through in situ hybridization, Western blotting and immunohistochemistry. Histology analysis confirmed that fibrin protein was present at the conceptus adhesion region on P21. These results suggest that in addition to the numerous adhesion molecules so far characterized, fibrin is a new candidate molecule for maintaining conceptus adhesion for pregnancy continuation in ruminants.
Rulan Bai, Hanako Bai, Mariko Kuse, Atsushi Ideta, Yoshito Aoyagi, Hiroshi Fujiwara, Kiyoshi Okuda, Kazuhiko Imakawa, and Toshihiro Sakurai
Following bidirectional communication, the conceptus and the uterine epithelium must establish a proper cell–cell interaction, resulting in the progression of implantation processes. To clarify the mechanism of conceptus attachment to the uterine endometrium, we studied whether vascular cell adhesion molecule (VCAM1) was expressed in bovine conceptuses or endometrium during the peri-attachment period. Uterine VCAM1 expression was minimal in day 17 (day 0=day of estrus) cyclic and pregnant animals, but increased between days 20 and 22 of pregnancy. In the intercaruncular regions, VCAM1 protein was localized to the luminal and glandular epithelia, whereas in the caruncular regions, VCAM1 protein was detected in the stroma and endothelia of the uterine endometrium. In cultured endometrial epithelial cells (EECs), VCAM1 expression was up-regulated when treated with uterine flushings or growth factor and further increased when EECs were cocultured with bovine trophoblast CT1 cells. VCAM1 expression in CT1 cells was also up-regulated with the use of uterine flushings, and further increased when these cells were cocultured with EECs. Expression of VCAM1 receptor, integrin α 4 (ITGA4) mRNA, increased significantly in day 22 conceptuses. In day 22 pregnant uteri, VCAM1 protein was found in both EECs and conceptuses, but ITGA4 was localized only to trophoblasts. These observations indicate that cell–cell interactions between conceptuses and uterine epithelial cells are required for sufficient VCAM1 and ITGA4 expression in the bovine species and suggest that uterine VCAM1 and conceptus ITGA4 play a role in the establishment of conceptus adhesion to the uterine endometrium.
Kazuhiko Imakawa, Pramod Dhakal, Kaiyu Kubota, Kazuya Kusama, Damayanti Chakraborty, M A Karim Rumi, and Michael J Soares
Trophoblast stem (TS) cells possess the capacity to differentiate along a multi-lineage pathway yielding several specialized cell types. The regulatory network controlling trophoblast cell differentiation is poorly understood. Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain, 2 (CITED2) has been implicated in the regulation of placentation; however, we know little about how CITED2 acts to influence trophoblast cells. Rat Rcho-1 TS cells can be manipulated to proliferate or differentiate into specialized trophoblast lineages and are an excellent model for investigating trophoblast differentiation. CITED2 transcript and protein showed a robust induction during Rcho-1 TS cell differentiation. We used an shRNA knockdown approach to disrupt CITED2 expression in order to investigate its involvement in trophoblast cell differentiation. RNA-sequencing was used to examine the impact of CITED2 on trophoblast cell differentiation. CITED2 disruption affected the differentiating trophoblast cell transcriptome. CITED2 possessed a prominent role in the regulation of cell differentiation with links to several signal transduction pathways and to hypoxia-regulated and coagulation processes. In summary, our findings indicate that CITED2 contributes to the regulation of trophoblast cell differentiation.
Reproduction (2016) 151 1–8