Search Results
You are looking at 1 - 7 of 7 items for
- Author: Kelle H Moley x
- Refine by Access: All content x
Search for other papers by Sung Tae Kim in
Google Scholar
PubMed
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
The objective of this study was to determine whether sperm quality, fertilization capacity, and subsequent embryo development are altered in diabetic male mice and whether differences in facilitative glucose transporter (GLUT; now known as solute carrier family 2, SLC2A) expression in the testis and sperm exist. Using two type 1 diabetic mouse models, SLC2A expression in the testis and sperm was determined by western immunoblotting and immunofluorescence staining. To address sperm quality and fertilization capacity, computer-assisted sperm analysis and in vitro fertilization were performed. SLC2A1, SLC2A3, and SLC2A5 did not change in expression in the testes or sperm between diabetic and non-diabetic mice. SLC2A8 and SLC2A9b were less expressed in the testes of both diabetic models versus controls. SLC2A9a was not expressed in the Akita testis or sperm when compared with strain-matched controls. 3β-hydroxysteroid dehydrogenase (HSD3B) expression was significantly decreased in the Leydig cells from the diabetic mice. Sperm concentration and motility were significantly lower in both the diabetics when compared with the control. These parameters normalized in Akita diabetic males treated with insulin. In addition, fertilization rates were significantly lower in the Akita group (17.9%) and the streptozotocin (STZ)-injected male group (43.6%) when compared with the normal group (88.8%). Interestingly, of the fertilized zygotes, embryo developmental rates to the blastocyst stage were lower in both diabetic models (7.1% Akita and 50.0% STZ) when compared with controls (71.7%). Male diabetes may cause male subfertility by altering steroidogenesis, sperm motility, and SLC2A expression. This is the first study to link a paternal metabolic abnormality to a sperm effect on cell division and subsequent embryonic development.
Search for other papers by Antonina I Frolova in
Google Scholar
PubMed
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
Facilitative glucose transport molecules (glucose transporters, GLUTs) are responsible for glucose transport across cellular membranes. Of the 14 family members, expression of nine has been reported in the murine uterus and seven in the human uterus. Some studies reveal that adequate glucose uptake and metabolism are essential for the proper differentiation of the uterine endometrium toward a receptive state capable of supporting embryo implantation. However, the mechanistic role of GLUTs in endometrial function remains poorly understood. This review aims to present the current knowledge about GLUT expression in the uterus and distribution among the different cell types within the endometrium. In addition, it analyzes the available data in the context of roles GLUTs may play in normal uterine physiology as well as the pathological conditions of infertility, endometrial cancer, and polycystic ovarian syndrome.
Search for other papers by Joan K Riley in
Google Scholar
PubMed
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
The maintenance of optimal glucose utilization during the preimplantation period is critical for embryo survival. A decrease in glucose transport during preimplantation development has been linked to the early steps of programmed cell death in these embryos. Decreased glucose transport is not thought to be simply a consequence of cell death, rather it is thought to be a trigger that can initiate the apoptotic cascade. Extensive apoptosis during the preimplantation period may manifest later in pregnancy as a malformation – or miscarriage, if cell loss is excessive. Phosphatidylinositol 3-kinase (PI3-K) is a known regulator of a number of physiologic responses including cellular proliferation, growth, and survival as well as glucose metabolism. Studies performed in other cell systems have demonstrated that the PI3-K pathway plays a critical role in maintaining glucose transport and metabolism. This review will present the current evidence that suggests that PI3-K is vital for preimplantation embryo survival and development. In addition, data demonstrating that PI3-K activity is important for glucose metabolism during this early developmental period will be discussed.
Search for other papers by Erica Louden in
Google Scholar
PubMed
Search for other papers by Maggie M Chi in
Google Scholar
PubMed
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
Maternal insulin resistance results in poor pregnancy outcomes. In vivo and in vitro exposure of the murine blastocyst to high insulin or IGF1 results in the down-regulation of the IGF1 receptor (IGF1R). This in turn leads to decreased glucose uptake, increased apoptosis, as well as pregnancy resorption and growth restriction. Recent studies have shown that blastocyst activation of AMP-activated protein kinase (AMPK) reverses these detrimental effects; however, the mechanism was not clear. The objective of this study was to determine how AMPK activation rescues the insulin-resistant blastocyst. Using trophoblast stem (TS) cells derived from the blastocyst, insulin resistance was recreated by transfecting with siRNA to Igf1r and down-regulating expression of the protein. These cells were then exposed to AMPK activators 5-aminoimidazole-4-carboxamide riboside and phenformin, and evaluated for apoptosis, insulin-stimulated 2-deoxyglucose uptake, PI3-kinase activity, and levels of phospho-AKT, phospho-mTor, and phospho-70S6K. Surprisingly, disrupted insulin signaling led to decreased AMPK activity in TS cells. Activators reversed these effects by increasing the AMP/ATP ratio. Moreover, this treatment increased insulin-stimulated 2-deoxyglucose transport and cell survival, and led to an increase in PI3-kinase activity, as well as increased P-mTOR and p70S6K levels. This study is the first to demonstrate significant crosstalk between the AMPK and insulin signaling pathways in embryonic cells, specifically the enhanced response of PI3K/AKT/mTOR to AMPK activation. Decreased insulin signaling also resulted in decreased AMPK activation. These findings provide mechanistic targets in the AMPK signaling pathway that may be essential for improved pregnancy success in insulin-resistant states.
Search for other papers by Anna L Boudoures in
Google Scholar
PubMed
Search for other papers by Maggie Chi in
Google Scholar
PubMed
Search for other papers by Alysha Thompson in
Google Scholar
PubMed
Search for other papers by Wendy Zhang in
Google Scholar
PubMed
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
Obesity negatively affects many aspects of the human body including reproductive function. In females, the root of the decline in fertility is linked to problems in the oocyte. Problems seen in oocytes that positively correlate with increasing BMI include changes to the metabolism, lipid accumulation, meiosis, and metaphase II (MII) spindle structure. Studies in mice indicate that dietary interventions fail to reverse these problems. How exercise affects the oocytes has not been addressed. Therefore, we hypothesized an exercise intervention would improve oocyte quality. Here we show that in a mouse model of an exercise, intervention can improve lipid metabolism in germinal vesicle (GV) stage oocytes. Oocytes significantly increased activity and transcription of the β-oxidation enzyme hydroxyacyl-coenzyme A dehydrogenase in response to exercise training only if the mice had been fed a high-fat diet (HFD). An exercise intervention also reversed the lipid accumulation seen in GV stage oocytes of HFD females. However, delays in meiosis and disorganized MII spindles remained present. Therefore, exercise is able to improve, but not reverse, damage imparted on oocytes as a result of an HFD and obesity. By utilizing an exercise intervention on an HFD, we determined only lipid content, and lipid metabolism is changed in GV oocytes. Moving forward, interventions to improve oocyte quality may need to be more targeted to the oocyte specifically. Because of the HFD-induced deficiency in β-oxidation, dietary supplementation with substrates to improve lipid utilization may be more beneficial.
Search for other papers by Katie L Adastra in
Google Scholar
PubMed
Search for other papers by Maggie M Chi in
Google Scholar
PubMed
Search for other papers by Joan K Riley in
Google Scholar
PubMed
Departments of, Obstetrics and Gynecology, Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8064, Saint Louis, Missouri 63110, USA
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
Autophagy is critical to the process of development because mouse models have shown that lack of autophagy leads to developmental arrest during the pre-implantation stage of embryogenesis. The process of autophagy is regulated through signaling pathways, which respond to the cellular environment. Therefore, any alteration in the environment may lead to the dysregulation of the autophagic process potentially resulting in cell death. Using both in vitro and in vivo models to study autophagy in the pre-implantation murine embryo, we observed that the cells respond to environmental stressors (i.e. hyperglycemic environment) by increasing activation of autophagy in a differential pattern within the embryo. This upregulation is accompanied by an increase in apoptosis, which appears to plateau at high concentrations of glucose. The activation of the autophagic pathway was further confirmed by an increase in GAPDH activity in both in vivo and in vitro hyperglycemic models, which has been linked to autophagy through the activation of the Atg12 gene. Furthermore, this increase in autophagy in response to a hyperglycemic environment was observed as early as the oocyte stage. In conclusion, in this study, we provided evidence for a differential response of elevated activation of autophagy in embryos and oocytes exposed to a hyperglycemic environment.
Search for other papers by Jing Chen in
Google Scholar
PubMed
Search for other papers by Maggie M Chi in
Google Scholar
PubMed
Search for other papers by Kelle H Moley in
Google Scholar
PubMed
Search for other papers by Stephen M Downs in
Google Scholar
PubMed
cAMP plays a critical role in the control of oocyte maturation, as a high level of cAMP maintains oocyte arrest at the first meiotic prophase. Yet this study shows that pulsing meiotically arrested denuded oocytes (DO) with cAMP induces oocyte maturation through the activation of AMP-activated protein kinase (PRKA). Short-term (3 h) pulsing of meiotically arrested oocytes with forskolin, an adenyl cyclase (AC) activator, increased oocyte cAMP, led to elevated AMP, and induced oocyte meiotic resumption compared to oocytes continuously cultured in the control medium with or without forskolin. Western analysis showed that germinal vesicle (GV)-stage oocytes after forskolin pulsing contained increased levels of phospho-acetyl CoA carboxylase (pACACA), a primary substrate of PRKA. Pulsing oocytes with the phosphodiesterase (PDE)-sensitive cAMP analog, 8-bromo-cAMP (8-Br-cAMP), also increased pACACA and pPRKA levels in GV-stage oocytes and induced oocyte meiotic resumption. Moreover, the PRKA inhibitors, compound C and araA, prevented 8-Br-cAMP pulsing-induced maturation. The lack of effect on meiotic induction and PRKA activation when oocytes were pulsed with the PDE-resistant activators of cAMP-dependent protein kinase, Sp-cAMP-AM and Sp-5,6-DCI-cBIMPS, suggests that cAMP degradation is required for pulsing-induced maturation. Pulsing oocytes with the exchange protein directly activated by cAMP (Epac)-specific activator, 8-CPT-2′-O-Me-cAMP, had no stimulatory effect on oocyte maturation, suggesting Epac is not involved in the pulsing-induced maturation. Taken together, these data support the idea that a transient increase in oocyte cAMP can induce meiotic resumption via activation of PRKA.