Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Kirsten E Scoggin x
  • All content x
Clear All Modify Search
Free access

Erin L Legacki, C Jo Corbin, Barry A Ball, Kirsten E Scoggin, Scott D Stanley, and Alan J Conley

Steroidogenic enzymes in placentas shape steroid hormone profiles in the maternal circulation of each mammalian species. These include 3β-hydroxysteroid dehydrogenase/Δ5-4 isomerase (3βHSD) and 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17) crucial for progesterone and androgen synthesis, respectively, as well as aromatase cytochrome P450 (P450arom) that converts Δ4-androgens to estrogens. 5α-reductase is another important enzyme in equine placentas because 5α-dihydroprogesterone (DHP) sustains pregnancy in the absence of progesterone in the second half of equine pregnancy. DHP and its metabolites decline dramatically days before foaling, but few studies have investigated placental enzyme activity before or at parturition in mares. Thus, key enzyme activities and transcript abundance were investigated in equine placentas at 300 days of gestation (GD300) and post-partum (term). Equine testis was used as a positive control for P450c17 activity. Substrates were incubated with microsomal preparations, together with enzyme inhibitors, and products were measured by liquid chromatography tandem mass spectrometry or radiometric methods (aromatase). Equine placenta expressed high levels of 3βHSD, 5α-reductase and aromatase, and minimal P450c17 activity at GD300 compared with testis (600-fold higher). At foaling, 3βHSD and aromatase activities and transcript abundance were unchanged but 5α-reductase (and P450c17) was no longer detectable (P < 0.05) and transcript was decreased. Trilostane inhibited 3βHSD significantly more in testis than placenta, suggesting possible existence of different 3βHSD isoforms. Equine placentas have significant capacity for steroid metabolism by 5α-reductase, 3βHSD and aromatase but little for androgen synthesis lacking P450c17. Declining pre-partum 5α-reduced pregnane concentrations coincide with selective loss of placental 5α-reductase activity and expression at parturition in horses.

Free access

Erin L Legacki, Barry A Bal, C Jo Corbin, Shavahn C Loux, Kirsten E Scoggin, Scott D Stanley, and Alan J Conley

Free access

Erin L Legacki, Barry A Ball, C Jo Corbin, Shavahn C Loux, Kirsten E Scoggin, Scott D Stanley, and Alan J Conley

Equine fetuses have substantial circulating pregnenolone concentrations and thus have been postulated to provide significant substrate for placental 5α-reduced pregnane production, but the fetal site of pregnenolone synthesis remains unclear. The current studies investigated steroid concentrations in blood, adrenal glands, gonads and placenta from fetuses (4, 6, 9 and 10 months of gestational age (GA)), as well as tissue steroidogenic enzyme transcript levels. Pregnenolone and dehydroepiandrosterone (DHEA) were the most abundant steroids in fetal blood, pregnenolone was consistently higher but decreased progressively with GA. Tissue steroid concentrations generally paralleled those in serum with time. Adrenal and gonadal tissue pregnenolone concentrations were similar and 100-fold higher than those in allantochorion. DHEA was far higher in gonads than adrenals and progesterone was higher in adrenals than gonads. Androstenedione decreased with GA in adrenals but not in gonads. Transcript analysis generally supported these data. CYP17A1 was higher in fetal gonads than adrenals or allantochorion, and HSD3B1 was higher in fetal adrenals and allantochorion than gonads. CYP11A1 transcript was also significantly higher in adrenals and gonads than allantochorion and CYP19 and SRD5A1 transcripts were higher in allantochorion than either fetal adrenals or gonads. Given these data, and their much greater size, the fetal gonads are the source of DHEA and likely contribute more than fetal adrenal glands to circulating fetal pregnenolone concentrations. Low CYP11A1 but high HSD3B1 and SRD5A1 transcript abundance in allantochorion, and low tissue pregnenolone, suggests that endogenous placental pregnenolone synthesis is low and likely contributes little to equine placental 5α-reduced pregnane secretion.

Restricted access

Hossam El-Sheikh Ali, Kirsten E Scoggin, Rebecca Ruby, Alan Loynachan, Yatta Boakari, Claudia Fernandes, Pouya Dini, Carleigh Elizabeth Fedorka, Shavahn C Loux, Alejandro Esteller-Vico, and Barry A Ball

Cervical remodeling is a critical component in both term and preterm labor in eutherian mammals. However, the molecular mechanisms underlying cervical remodeling remain poorly understood in the mare. The current study compared the transcriptome of the equine cervix (cervical mucosa (CM) and stroma (CS)) during placentitis (placentitis group, n  = 5) and normal prepartum mares (prepartum group, n  = 3) to normal pregnant mares (control group, n  = 4). Transcriptome analysis identified differentially expressed genes (DEGs) during placentitis (5310 in CM and 907 in CS) and during the normal prepartum period (189 in CM and 78 in CS). Our study revealed that cervical remodeling during placentitis was dominated by inflammatory signaling as reflected by the overrepresented toll-like receptor signaling, interleukin signaling, T cell activation, and B cell activation pathways. These pathways were accompanied by upregulation of several proteases, including matrix metalloproteinases (MMP1, MMP2, and MMP9), cathepsins (CTSB, CTSC, and CTSD) and a disintegrin and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1, ADAMTS4, and ADAMTS5), which are crucial for degradation of cervical collagens during remodeling. Cervical remodeling during placentitis was also associated with upregulation of water channel-related transcripts (AQP9 and RLN), angiogenesis-related transcripts (NOS3, ENG1, THBS1, and RAC2), and aggrecan (ACAN), a hydrophilic glucosaminoglycan, with subsequent cervical hydration. The normal prepartum cervix was associated with upregulation of ADAMTS1, ADAMTS4, NOS3 and THBS1, which might reflect an early stage of cervical remodeling taking place in preparation for labor. In conclusion, our findings revealed the possible key regulators and mechanisms underlying equine cervical remodeling during placentitis and the normal prepartum period.