Search Results
You are looking at 1 - 4 of 4 items for
- Author: Lawrence C Smith x
- Refine by access: All content x
Search for other papers by Daniel R Arnold in
Google Scholar
PubMed
Search for other papers by Vilceu Bordignon in
Google Scholar
PubMed
Search for other papers by Réjean Lefebvre in
Google Scholar
PubMed
Search for other papers by Bruce D Murphy in
Google Scholar
PubMed
Search for other papers by Lawrence C Smith in
Google Scholar
PubMed
Abnormal placental development limits success in ruminant pregnancies derived from somatic cell nuclear transfer (SCNT), due to reduction in placentome number and consequently, maternal/fetal exchange. In the primary stages of an epithelial–chorial association, the maternal/fetal interface is characterized by progressive endometrial invasion by specialized trophoblast binucleate/giant cells (TGC). We hypothesized that dysfunctional placentation in SCNT pregnancies results from aberration in expression of genes known to be necessary for trophoblast proliferation (Mash2), differentiation (Hand1), and function (IFN-τ and PAG-9). We, therefore, compared the expression of these factors in trophoblast from bovine embryos derived from artificial insemination (AI), in vitro fertilization (IVF), and SCNT prior to (day 17) and following (day 40 of gestation) implantation, as well as TGC densities and function. In preimplantation embryos, Mash2 mRNA was more abundant in SCNT embryos compared to AI, while Hand1 was highest in AI and IVF relative to SCNT embryos. IFN-τ mRNA abundance did not differ among groups. PAG-9 mRNA was undetectable in SCNT embryos, present in IVF embryos and highest in AI embryos. In postimplantation pregnancies, SCNT fetal cotyledons displayed higher Mash2 and Hand1 than AI and IVF tissues. Allelic expression of Mash2 was not different among the groups, which suggests that elevated mRNA expression was not due to altered imprinting status of Mash2. The day 40 SCNT cotyledons had the fewest number of TGC compared to IVF and AI controls. Thus, expression of genes critical to normal placental development is altered in SCNT bovine embryos, and this is expected to cause abnormal trophoblast differentiation and contribute to pregnancy loss.
Search for other papers by Yuichi Kameyama in
Google Scholar
PubMed
Search for other papers by France Filion in
Google Scholar
PubMed
Search for other papers by Jae Gyu Yoo in
Google Scholar
PubMed
Search for other papers by Lawrence C Smith in
Google Scholar
PubMed
In vitro culture (IVC), used in assisted reproductive technologies, is a major environmental stress on the embryo. To evaluate the effect of IVC on mitochondrial transcription and the control of mtDNA replication, we measured the mtDNA copy number and relative amount of mRNA for mitochondrial-related genes in individual rat oocytes, zygotes and embryos using real-time PCR. The average mtDNA copy number was 147 600 (±3000) in metaphase II oocytes. The mtDNA copy number was stable throughout in vivo early development and IVC induced an increase in mtDNA copy number from the 8-cell stage onwards. Gapd mRNA levels vary during early development and IVC did not change the patterns of these housekeeping gene transcripts. Polrmt mRNA levels did not vary during early development up to the morula stage but increased at the blastocyst stage. IVC induced the up-regulation of Polrmt mRNA, one of the key genes regulating mtDNA transcription and replication, at the blastocyst stage. An increase in mt-Nd4 mRNA preceded the blastocyst-related event observed in nuclear-encoded Gapd and Polrmt, suggesting that the expression of mitochondrial encoded genes is controlled differently from nuclear encoded genes. We conclude that the IVC system can perturb mitochondrial transcription and the control of mtDNA replication in rat embryos. This perturbation of mtDNA regulation may be responsible for the abnormal physiology, metabolism and viability of in vitro-derived embryos.
Search for other papers by C Joy McIntosh in
Google Scholar
PubMed
Search for other papers by Steve Lawrence in
Google Scholar
PubMed
Search for other papers by Peter Smith in
Google Scholar
PubMed
Search for other papers by Jennifer L Juengel in
Google Scholar
PubMed
Search for other papers by Kenneth P McNatty in
Google Scholar
PubMed
The transforming growth factor β (TGFB) superfamily proteins bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), are essential for mammalian fertility. Recent in vitro evidence suggests that the proregions of mouse BMP15 and GDF9 interact with their mature proteins after secretion. In this study, we have actively immunized mice against these proregions to test the potential in vivo roles on fertility. Mice were immunized with either N- or C-terminus proregion peptides of BMP15 or GDF9, or a full-length GDF9 proregion protein, each conjugated to keyhole limpet hemocyanin (KLH). For each immunization group, ovaries were collected from ten mice for histology after immunization, while a further 20 mice were allowed to breed and litter sizes were counted. To link the ovulation and fertility data of these two experimental end points, mice were joined during the time period identified by histology as being the ovulatory period resulting in to the corpora lutea (CL) counted. Antibody titers in sera increased throughout the study period, with no cross-reactivity observed between BMP15 and GDF9 sera and antigens. Compared with KLH controls, mice immunized with the N-terminus BMP15 proregion peptide had ovaries with fewer CL (P<0.05) and produced smaller litters (P<0.05). In contrast, mice immunized with the full-length GDF9 proregion not only had more CL (P<0.01) but also had significantly smaller litter sizes (P<0.01). None of the treatments affected the number of antral follicles per ovary. These findings are consistent with the hypothesis that the proregions of BMP15 and GDF9, after secretion by the oocyte, have physiologically important roles in regulating ovulation rate and litter size in mice.
Search for other papers by Joëlle A Desmarais in
Google Scholar
PubMed
Search for other papers by Simon-Pierre Demers in
Google Scholar
PubMed
Search for other papers by Joao Suzuki Jr in
Google Scholar
PubMed
Search for other papers by Simon Laflamme in
Google Scholar
PubMed
Search for other papers by Patrick Vincent in
Google Scholar
PubMed
Search for other papers by Sheila Laverty in
Google Scholar
PubMed
Search for other papers by Lawrence C Smith in
Google Scholar
PubMed
Although putative horse embryonic stem (ES)-like cell lines have been obtained recently from in vivo-derived embryos, it is currently not known whether it is possible to obtain ES cell (ESC) lines from somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) embryos. Our aim is to establish culture conditions for the derivation of autologous ESC lines for cell therapy studies in an equine model. Our results indicate that both the use of early-stage blastocysts with a clearly visible inner cell mass (ICM) and the use of pronase to dissect the ICM allow the derivation of a higher proportion of primary ICM outgrowths from PA and SCNT embryos. Primary ICM outgrowths express the molecular markers of pluripotency POU class 5 homeobox 1 (POU5F1) and (sex determining region-Y)-box2 (SOX2), and in some cases, NANOG. Cells obtained after the passages of PA primary ICM outgrowths display alkaline phosphatase (AP) activity and POU5F1, SOX2, caudal-related homeobox-2 (CDX2) and eomesodermin (EOMES) expression, but may lose NANOG. Cystic embryoid body-like structures expressing POU5F1, CDX2 and EOMES were produced from these cells. Immunohistochemical analysis of equine embryos reveals the presence of POU5F1 in trophectoderm, primitive endoderm and ICM. These results suggest that cells obtained after passages of primary ICM outgrowths are positive for trophoblast stem cell markers while expressing POU5F1 and displaying AP activity. Therefore, these cells most likely represent trophoblast cells rather than true ESCs. This study represents an important first step towards the production of autologous equine ESCs for pre-clinical cell therapy studies on large animal models.