Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Lei An x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Kun Tan, Zhuqing Wang, Zhenni Zhang, Lei An, and Jianhui Tian

Increasing evidence indicates that IVF (IVF includes in vitro fertilization and culture) embryos and babies are associated with a series of health complications, and some of them show sex-dimorphic patterns. Therefore, we hypothesized that IVF procedures have sex-biased or even sex-specific effects on embryonic and fetal development. Here, we demonstrate that IVF-induced side effects show significant sexual dimorphic patterns from the pre-implantation to the prenatal stage. During the pre-implantation stage, female IVF embryos appear to be more vulnerable to IVF-induced effects, including an increased percentage of apoptosis (7.22±1.94 vs 0.71±0.76, P<0.01), and dysregulated expression of representative sex-dimorphic genes (Xist, Hprt, Pgk1 and Hsp70). During the mid-gestation stage, IVF males had a higher survival rate than IVF females at E13.5 (male:female=1.33:1), accompanied with a female-biased pregnancy loss. In addition, while both IVF males and females had reduced placental vasculogenesis/angiogenesis, the compensatory placental overgrowth was more evident in IVF males. During the late-gestation period, IVF fetuses had a higher sex ratio (male:female=1.48:1) at E19.5, and both male and female IVF placentas showed overgrowth. After birth, IVF males grew faster than their in vivo (IVO) counterparts, while IVF females showed a similar growth pattern with IVO females. The present study provides a new insight into understanding IVF-induced health complications during embryonic and fetal development. By understanding and minimizing these sex-biased effects of the IVF process, the health of IVF-conceived babies may be improved in the future.

Free access

Guangyin Xi, Wenjing Wang, Sarfaraz A Fazlani, Fusheng Yao, Mingyao Yang, Jing Hao, Lei An, and Jianhui Tian

Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.

Free access

Wen-Min Cheng, Lei An, Zhong-Hong Wu, Yu-Bo Zhu, Jing-Hao Liu, Hong-Mei Gao, Xi-He Li, Shi-Jun Zheng, Dong-Bao Chen, and Jian-Hui Tian

We recently reported that electrical activation followed by secondary chemical activation greatly enhanced the developmental competence of in vitro matured porcine oocytes fertilized by intracytoplasmic sperm injection (ICSI). We hypothesized that sperm treatment with disulfide bond reducing agents will enhance the development competence of porcine embryos produced by this ICSI procedure. We examined the effects of glutathione (GSH), dithiothreitol (DTT), GSH or DTT in combination with heparin on sperm DNA structure, paternal chromosomal integrity, pronuclear formation, and developmental competence of in vitro matured porcine oocytes after ICSI. Acridine orange staining and flow cytometry based sperm chromatin structure assay were used to determine sperm DNA integrity by calculating the cells outside the main population (COMP αT). No differences were observed in COMP αT values among GSH-treated and control groups. COMP αT values in GSH-treated groups were significantly lower than that in DTT-treated groups. Following ICSI, GSH treatments did not significantly alter paternal chromosomal integrity. Paternal chromosomal integrity in sperm treated with DTT plus or minus heparin was also the lowest among all groups. GSH-treated sperm yielded the highest rates of normal fertilization and blastocyst formation, which were significantly higher than that of control and DTT-treated groups. The majority of blastocysts derived from control and GSH-treated spermatozoa were diploid, whereas blastocysts derived from DTT-treated spermatozoa were haploid. In conclusion, sperm treatment with GSH enhanced the developmental capacity of porcine embryos produced by our optimized ICSI procedure.

Free access

Shi-Yu An, Zi-Fei Liu, El-Samahy M A, Ming-Tian Deng, Xiao-Xiao Gao, Ya-Xu Liang, Chen-Bo Shi, Zhi-Hai Lei, Feng Wang, and Guo-Min Zhang

Long ncRNAs regulate a complex array of fundamental biological processes, while its molecular regulatory mechanism in Leydig cells (LCs) remains unclear. In the present study, we established the lncRNA LOC102176306/miR-1197-3p/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) regulatory network by bioinformatic prediction, and investigated its roles in goat LCs. We found that lncRNA LOC102176306 could efficiently bind to miR-1197-3p and regulate PPARGC1A expression in goat LCs. Downregulation of lncRNA LOC102176306 significantly supressed testosterone (T) synthesis and ATP production, decreased the activities of antioxidant enzymes and mitochondrial complex I and complex III, caused the loss of mitochondrial membrane potential, and inhibited the proliferation of goat LCs by decreasing PPARGC1A expression, while these effects could be restored by miR-1197-3p inhibitor treatment. In addition, miR-1197-3p mimics treatment significantly alleviated the positive effects of lncRNA LOC102176306 overexpression on T and ATP production, antioxidant capacity and proliferation of goat LCs. Taken together, lncRNA LOC102176306 functioned as a sponge for miR-1197-3p to maintain PPARGC1A expression, thereby affecting the steroidogenesis, cell proliferation and oxidative stress of goat LCs. These findings extend our understanding of the molecular mechanisms of T synthesis, cell proliferation and oxidative stress of LCs.