Search Results

You are looking at 1 - 10 of 65 items for

  • Author: Li Wang x
Clear All Modify Search
Free access

Li Wang and Chen Xu

microRNAs (miRNAs) are a class of small endogenous RNAs, 19–25 nucleotides in size, which play a role in the regulation of gene expression at transcriptional and post-transcriptional levels. Spermatogenesis is a complex process through which spermatogonial stem cells (SSCs) proliferate and differentiate into mature spermatozoa. A large number of miRNAs are abundantly expressed in spermatogenic cells. Growing evidence supports the essential role of miRNA regulation in normal spermatogenesis and male fertility and cumulative research has shown that this form of regulation contributes to the etiology of testicular germ cell tumors (TGCTs). In this review, we addressed recent advancements of miRNA expression profiles in testis and focused on the regulatory functions of miRNA in the process of SSC renewal, spermatogonial mitosis, spermatocyte meiosis, spermiogenesis, and the occurrence of TGCTs.

Free access

Wei Wang, Xia Chen, Xinxiu Li, Li Wang, Haiyan Zhang, Yu He, Jingjing Wang, Yongyan Zhao, Baole Zhang and Yinxue Xu

FSH plays a critical role in granulosa cell (GC) proliferation and steroidogenesis through modulation by factors including bone morphogenetic proteins family, which belongs to transforming growth factor β (TGFB) superfamily. TGFBs are the key factors in maintaining cell growth and differentiation in ovaries. However, the interaction of FSH and TGFB on the GCs' proliferation and steroidogenesis remains to be elucidated. In this study, we have investigated the role of SMAD4, a core molecule mediating the intracellular TGFB/SMAD signal transduction pathway, in FSH-mediated proliferation and steroidogenesis of porcine GCs. In this study, SMAD4 was knocked down using interference RNA in porcine GCs. Our results showed that SMAD4-siRNA causes specific inhibition of SMAD4 mRNA and protein expression after transfection. Knockdown of SMAD4 significantly inhibited FSH-induced porcine GC proliferation and estradiol production and changed the expression of cyclin D2, CDK2, CDK4, CYP19a1, and CYP11a1. Thus, these observations establish an important role of SMAD4 in the regulation of the response of porcine GCs to FSH.

Free access

YF Tan, FX Li, YS Piao, XY Sun and YL Wang

Many genes related to the cyclic changes of the uterus during the oestrous cycle have been identified using a one-by-one approach. In the present study, cDNA microarray technology was applied to investigate the global profile of gene expression of mouse uterus at the oestrous and dioestrous stages. At a certain stage of the oestrous cycle, the uteri of mature CD-1 mice (n=10) were removed, pooled and snap-frozen in liquid nitrogen. Total RNA was extracted to synthesize cDNA probes for microarray assay. By screening 8192 mouse genes and expressed sequence tags (ESTs), 51 upregulated and 51 downregulated genes were identified in oestrous uterus, of which 62 are well characterized and 40 are ESTs. The known genes were assigned to various gene categories according to their main function. The microarray was performed three times with three independent sets of uterine tissue pools. The results of northern blot analysis for small proline-rich protein 2 (Sprr2), 17beta-hydroxysteroid dehydrogenase type 2 (17betaHSD-2), high mobility group 2 (Hmg2), mitotic checkpoint component 2 (Mad2) and an EST AW555366 mRNA were consistent with that of microarray analysis. In situ hybridization was performed to localize the transcript of the EST AW555366. Most of the upregulated genes encode secreted immune-related proteins, proteinases and their inhibitors, indicating their potential involvement in sperm viability as well as capacitation. The downregulated genes mainly encode cell cycle-related factors, implying the active proliferation of uterus at dioestrus.

Free access

Yang Gao, Haixia Wen, Chao Wang and Qinglei Li

Transforming growth factor β (TGFβ) superfamily signaling is essential for female reproduction. Dysregulation of the TGFβ signaling pathway can cause reproductive diseases. SMA and MAD (mothers against decapentaplegic) (SMAD) proteins are downstream signaling transducers of the TGFβ superfamily. SMAD7 is an inhibitory SMAD that regulates TGFβ signaling in vitro. However, the function of SMAD7 in the ovary remains poorly defined. To determine the signaling preference and potential role of SMAD7 in the ovary, we herein examined the expression, regulation, and function of SMAD7 in mouse granulosa cells. We showed that SMAD7 was expressed in granulosa cells and subject to regulation by intraovarian growth factors from the TGFβ superfamily. TGFB1 (TGFβ1), bone morphogenetic protein 4, and oocyte-derived growth differentiation factor 9 (GDF9) were capable of inducing Smad7 expression, suggesting a modulatory role of SMAD7 in a negative feedback loop. Using a small interfering RNA approach, we further demonstrated that SMAD7 was a negative regulator of TGFB1. Moreover, we revealed a link between SMAD7 and GDF9-mediated oocyte paracrine signaling, an essential component of oocyte–granulosa cell communication and folliculogenesis. Collectively, our results suggest that SMAD7 may function during follicular development via preferentially antagonizing and/or fine-tuning essential TGFβ superfamily signaling, which is involved in the regulation of oocyte–somatic cell interaction and granulosa cell function.

Free access

Lihua Yao, Mingyang Li, Jingwen Hu, Wangsheng Wang and Minzhi Gao

Polycystic ovary syndrome (PCOS) is a major cause of infertility in women of reproductive age. However, its exact etiology remains unknown. In this study, we sequenced miRNAs in human follicular fluid and identified 16 downregulated and 3 upregulated miRNAs in PCOS group compared with non-PCOS group. Among the differential expressed miRNAs, miR-335-5p was verified lower abundance in PCOS than non-PCOS group using quantitative real-time PCR. Besides, miR-335-5p negatively correlated with antral follicle count, anti-Müllerian hormone and total testosterone. Bioinformatics analysis identified serum/glucocorticoid-regulated kinase family member 3 (SGK3) as a potential target gene of miR-335-5p. SGK3 is involved in protein kinase B-mammalian target of rapamycin kinase (AKT-mTOR) signaling pathway and cell proliferation. Western blotting and cell counting kit-8 assays demonstrated that miR-335-5p mimic reduced, while miR-335-5p inhibitor increased, SGK3 abundance, AKT-mTOR pathway and cell proliferation in human granulosa-like tumor KGN cells. Dual-luciferase reporter assays showed that miR-335-5p binds to the 3′ untranslated region of SGK3 mRNA. Furthermore, miR-335-5p was decreased and SGK3 was elevated in human granulosa cells obtained from PCOS patients as compared with non-PCOS controls. These findings suggested that miR-335-5p is involved in granulosa cells proliferation by reducing SGK3 expression, which might provide a molecular target to improve dysfunctional granulosa cells in patients with PCOS.

Free access

Hemin Zhang, Desheng Li, Chendong Wang and Vanessa Hull

Successful conservation of an endangered species relies on a good understanding of its reproductive biology, but there are large knowledge gaps. For example, many questions remain unanswered with regard to gestation and fetal development in the giant panda. We take advantage of a sample size that is unprecedented for this species (n=13) to explore patterns in reproductive development across individuals at the China Conservation and Research Center for the Giant Panda. We use ultrasound techniques on multiple giant pandas for the first time to empirically confirm what has long been suspected that pandas exhibit delayed implantation of the embryo. We also show that the duration of postfetal detection period is remarkably similar across individuals (16.85±1.34 days). Detection of fetus by ultrasound was strongly correlated to the peak in urinary progesterone (r=0.96, t=8.48, d.f.=8, P=0.0001) and swelling in the mammary glands (r=0.79, t=3.61, d.f.=8, P=0.007) and vulva (r=0.91, t=6.40, d.f.=8, P=0.0002) of adult females. When controlling for both the duration of the total gestation period and the postfetal detection period, infant birth weight was only significantly predicted by the latter (β=11.25, s.e.m.=4.98, t=2.26, P=0.05), suggesting that delayed implantation increases flexibility in the timing of birth but is not important in dictating infant growth. This study informs reproductive biology by exploring the little-studied phenomenon of delayed implantation in relationship to physiological changes in pregnant giant panda females.

Free access

Dong Han, Xin-Yan Cao, Hui-Li Wang, Jing-Jing Li, Yan-Bo Wang and Jing-He Tan

Although studies suggest that the low competence of oocytes from prepubertal animals is due to their insufficient cytoplasmic maturation and that FSH improves oocyte maturation possibly by retarding meiotic progression and allowing more time for cytoplasmic maturation, the mechanisms by which puberty and gonadotropins regulate meiotic progression require additional detailed studies. For the first time, we observed that while meiotic progression was significantly slower, the maturation-promoting factor (MPF) activity of oocytes was significantly higher in prepubertal than in adult mice. To resolve this contradiction, we specified the molecules regulating the MPF activity and their localization during oocyte maturation in prepubertal and adult mice primed with or without gonadotropins. Our tests using corresponding enzyme regulators suggested that while activities of protein kinase A were unaffected, the activity of adenylate cyclase (ADCY) and phosphodiesterase increased while cell division cycle 2 homolog A (CDC2A) decreased significantly after puberty. While most of the adult oocytes had CDC2A protein concentrated in the germinal vesicle (GV) region, the majority of prepubertal oocytes showed no nuclear concentration of CDC2A. Maximally priming mice with equine chorionic gonadotropin brought the above parameters of prepubertal oocytes close to those in adult oocytes. Together, the results suggest that puberty and gonadotropin control oocyte meiotic progression mainly by regulating the ADCY activity and the concentration of the activated MPF toward the GV region.

Free access

Yi Lin, Huiqi Wang, Wenjing Wang, Shan Zeng, Yanmin Zhong and Da-Jin Li

Both regulatory T cells and regulatory natural killer (NK) cells may play essential roles in the maintenance of pregnancy. In this study, we show that a significantly high percentage of spontaneous embryo loss was observed in both allogeneic and syngeneic pregnant non-obese diabetic (NOD) mice. The percentage of embryo loss in allogeneic pregnant mice was further increased by the administration of anti-asialo ganglio-N-tetraosylceramide to deplete NK cells, but was decreased by the adoptive transfer of ITGA2+ISG20+ (CD49b+ CD25+) NK cells from normal mice. No such trend was observed in syngeneic pregnant NOD mice. The pattern of CXCR4 (specific receptor for CXCL12) expression on NK cells was analyzed and NK-cell migration was confirmed by in vitro and in vivo migratory assays. Since CXCL12 production by murine trophoblast cells was confirmed previously, our findings suggest that the recruitment of peripheral CXCR4-expressing ITGA2+ISG20+ NK cells into pregnant uteri may be important in the regulation of feto-maternal tolerance.

Free access

Kuan-Hao Tsui, Peng-Hui Wang, Li-Te Lin and Chia-Jung Li

Because ovarian granulosa cells are essential for oocyte maturation and development, we validated human granulosa HO23 cells to evaluate the ability of the DHEA to prevent cell death after starvation. The present study was aimed to investigate whether DHEA could protect against starvation-induced apoptosis and necroptosis in human oocyte granulosa HO23 cells. The starvation was induced by treatment of serum-free (SF) medium for 4 h in vitro. Starvation-induced mitochondrial depolarization, cytochrome c release and caspase-3 activation were largely prevented by DHEA in HO23 cells. We found that treatment with DHEA can restore starvation-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential imbalance. In addition, treatment of DHEA prevents cell death via upregulation of cytochrome c and downregulation of BAX in mitochondria. Most importantly, DHEA is ameliorated to mitochondrial function mediated through the decrease in mitochondrial ROS, maintained mitochondrial morphology, and enhancing the ability of cell proliferation and ROS scavenging. Our present data strongly indicate that DHEA reduces programmed cell death (apoptosis and necroptosis) in granulosa HO23 cells through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Taken together, our data suggest that the presence of DHEA could be beneficial to protect human oocyte granulosa HO23 cells under in vitro culture conditions during various assisted reproductive technology (ART) programs.

Free Chinese abstract: A Chinese translation of this abstract is freely available at

Free access

Mei-rong Zhao, Wei Qiu, Yu-xia Li, Zhi-bin Zhang, Dong Li and Yan-ling Wang

Transforming growth factor β (TGFβ) has been shown to be a multifunctional cytokine required for embryonic development and regulation of trophoblast cell behaviors. In the present study, a non-transformed cell-line representative of normal human trophoblast (NPC) was used to examine the effect of TGFβ1 on trophoblast cell adhesion and invasion. In vitro assay showed that TGFβ1 could significantly promote intercellular adhesion, while inhibiting cell invasion across the collagen I-coated filter. Reverse transcription (RT)-PCR and gelatin zymography demonstrated that TGFβ1 evidently repressed the mRNA expression and proenzyme production of matrix metalloproteinase (MMP)-9, but exerted no effect on mRNA expression and secretion of MMP-2. On the other hand, both the mRNA and protein expression of epithelial-cadherin and β-catenin were obviously upregulated by TGFβ1 in dose-dependent fashion, as revealed by RT-PCR and western-blot analysis. What is more, one of the critical TGFβ signaling molecules – Smad2 was notably phosphorylated in TGFβ1-treated NPC cells. The data indicates that cell invasion and adhesion are coordinated processes in human trophoblasts and that there exists paracrine regulation on adhesion molecules and invasion-associated enzymes in human placenta.