Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Li Zou x
Clear All Modify Search
Restricted access

Rongli Wang and Li Zou

A successful pregnancy crucially depends on well-regulated extravillous trophoblast migration and invasion. Maternally expressed gene 3 (MEG3) is a long noncoding RNA that plays an important role in regulating trophoblast cells cell function. As previously reported, the expression of MEG3 was reduced in preeclampsia, and downregulation of MEG3 could suppress trophoblast cells migration and promote its apoptosis. However, the downstream regulatory mechanism of MEG3 remains unknown. As reported, MEG3 could inhibit cell proliferation in endometrial carcinoma by regulating Notch signaling. Our previous studies have demonstrated that Notch1 is downregulated in preeclampsia and that inhibiting the expression of Notch1 could promote trophoblast cell apoptosis. Therefore, this study was designed to investigate the role of MEG3 and its the relationship with Notch1 in trophoblasts. In this study, the mRNA expression levels of both MEG3 and Notch1 were decreased in preeclampsia placenta (n = 15) compared to the normal samples (n = 15). Exogenous upregulation and downregulation of MEG3 in HTR8/SVneo cells were performed to investigate the role of MEG3 in cell biological behavior and its effects on Notch1 expression. The results showed that MEG3 enhancement promoted trophoblast cell migration and invasion and inhibited cell apoptosis. Downregulation of MEG3 elicited the opposite results. Associated factors, such as matrix metalloproteinases 2 (MMP2), BAX, and Bcl-2, were examined at the mRNA and protein levels. Our study demonstrated that MEG3 could regulate Notch1 expression to modulate trophoblast cell migration, invasion, and apoptosis, which may represent the molecular mechanism of poor placentation during preeclampsia.

Free access

Xiaoxia Liu, Qingqing Luo, Yanfang Zheng, Xiaoping Liu, Ying Hu, Weifang Liu, Minglian Luo, Yin Zhao and Li Zou

Preeclampsia is a serious complication of pregnancy and is closely related to endothelial dysfunction, which can be repaired by endothelial progenitor cells (EPCs). The DLL4/NOTCH–EFNB2 (ephrinB2) cascade may be involved in the pathogenesis of preeclampsia by inhibiting the biological activity of EPCs. In addition, both NOTCH1 and NOTCH4, which are specific receptors for DLL4/NOTCH, play critical roles in the various steps of angiogenesis. However, it has not been determined which receptor (NOTCH1, NOTCH4, or both) is specific for the DLL4/NOTCH–EFNB2 cascade. Accordingly, we performed a series of investigations to evaluate it. EFNB2 expression was examined when NOTCH4 or NOTCH1 was downregulated, with or without DLL4 treatment. Then, the effects of NOTCH4 on EPC function were detected. Additionally, we analyzed NOTCH4 and EFNB2 expression in the EPCs from preeclampsia and normal pregnancies. Results showed that NOTCH4 downregulation led to decreased expression of EFNB2, which maintained the same level in the presence of DLL4/NOTCH activation. By contrast, NOTCH1 silencing resulted in a moderate increase in EFNB2 expression, which further increased in the presence of DLL4/NOTCH activation. The downregulation of NOTCH4 resulted in an increase of EPC biological activity, which was similar to EFNB2 silencing. NOTCH4 expression, consistent with the EFNB2 level, increased notably in preeclampsia EPCs compared with the controls. These findings suggest that NOTCH4, not NOTCH1, is the specific receptor for the DLL4/NOTCH–EFNB2 cascade. Blockade of this cascade may enhance the angiogenic property of EPCs, and act as a potential target to promote angiogenesis in patients with preeclampsia.

Free access

Songcun Wang, Fengrun Sun, Mutian Han, Yinghua Liu, Qinyan Zou, Fuxin Wang, Yu Tao, Dajin Li, Meirong Du, Hong Li and Rui Zhu

There is delicate crosstalk between fetus-derived trophoblasts (Tros) and maternal cells during normal pregnancy. Dysfunctions in interaction are highly linked to some pregnancy complications, such as recurrent spontaneous abortion (RSA), pre-eclampsia and fetal growth restriction. Hyaluronan (HA), the most abundant component of extracellular matrix, has been reported to act as both a pro- and an anti-inflammatory molecule. Previously, we reported that HA promotes the invasion and proliferation of Tros by activating PI3K/Akt and MAPK/ERK1/2 signaling pathways. While lower HA secretion by Tros was observed during miscarriages than that during normal pregnancies, in the present study, we further confirmed that higher secretion of HA by Tros could induce M2 polarization of macrophages at the maternal–fetal interface by interacting with CD44 and activating the downstream PI3K/Akt-STAT-3/STAT-6 signaling pathways. Furthermore, HA could restore the production of IL-10 and other normal pregnancy markers by decidual macrophages (dMφs) from RSA. These findings underline the important roles of HA in regulating the function of dMφs and maintaining a normal pregnancy.