Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Li-xue Zhang x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Jing Xue, Hui Zhang, Wei Liu, Ming Liu, Min Shi, Zeqing Wen, and Changzhong Li

Adenomyosis is a finding that is associated with dysmenorrhea and heavy menstrual bleeding, associated with PI3K/AKT signaling overactivity. To investigate the effect of metformin on the growth of eutopic endometrial stromal cells (ESCs) from patients with adenomyosis and to explore the involvement of AMP-activated protein kinase (AMPK) and PI3K/AKT pathways. Primary cultures of human ESCs were derived from normal endometrium (normal endometrial stromal cells (N-ESCs)) and adenomyotic eutopic endometrium (adenomyotic endometrial stroma cells (A-ESCs)). Expression of AMPK was determined using immunocytochemistry and western blot analysis. 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays were used to determine the effects of metformin and compound C on ESCs and also to detect growth and proliferation of ESCs. AMPK and PI3K/AKT signaling was determined by western blotting. A-ECSs exhibited greater AMPK expression than N-ESCs. Metformin inhibited proliferation of ESCs in a concentration-dependent manner. The IC50 was 2.45 mmol/l for A-ESCs and 7.87 mmol/l for N-ESCs. Metformin increased AMPK activation levels (p-AMPK/AMPK) by 2.0±0.3-fold in A-ESCs, 2.3-fold in A-ESCs from the secretory phase, and 1.6-fold in the proliferation phase. The average reduction ratio of 17β-estradiol on A-ESCs was 2.1±0.8-fold in proliferative phase and 2.5±0.5-fold in secretory phase relative to the equivalent groups not treated with 17β-estradiol. The inhibitory effects of metformin on AKT activation (p-AKT/AKT) were more pronounced in A-ESCs from the secretory phase (3.2-fold inhibition vs control) than in those from the proliferation phase (2.3-fold inhibition vs control). Compound C, a selective AMPK inhibitor, abolished the effects of metformin on cell growth and PI3K/AKT signaling. Metformin inhibits cell growth via AMPK activation and subsequent inhibition of PI3K/AKT signaling in A-ESCs, particularly during the secretory phase, suggesting a greater effect of metformin on A-ESCs from secretory phase.

Restricted access

Wen-jing Guo, Yi-cheng Wang, Yong-dan Ma, Zhi-hui Cui, Li-xue Zhang, Li Nie, Xue-qin Zhang, Mei-jiao Wang, Jin-hu Zhang, Dong-zhi Yuan, and Li-min Yue

The incidence of polycystic ovary syndrome (PCOS) due to high-fat diet (HFD) consumption has been increasing significantly. However, the mechanism by which a HFD contributes to the pathogenesis of PCOS has not been elucidated. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein that regulates cholesterol metabolism. Our previous study revealed abnormally high PCSK9 levels in serum from patients with PCOS and in serum and hepatic and ovarian tissues from PCOS model mice, suggesting that PCSK9 is involved in the pathogenesis of PCOS. However, the factor that induces high PCSK9 expression in PCOS remains unclear. In this study, Pcsk9 knockout mice were used to further explore the role of PCSK9 in PCOS. We also studied the effects of a HFD on the expression of PCSK9 and sterol regulatory element-binding protein 2 (SREBP2), a regulator of cholesterol homeostasis and a key transcription factor that regulates the expression of PCSK9, and the roles of these proteins in PCOS pathology. Our results indicated HFD may play an important role by inducing abnormally high PCSK9 expression via SREBP2 upregulation. We further investigated the effects of an effective SREBP inhibitor, fatostain, and found that it could reduce HFD-induced PCSK9 expression, ameliorate hyperlipidemia and improve follicular development in PCOS model mice. Our study thus further elucidates the important role of an HFD in the pathogenesis of PCOS and provides a new clue in the prevention and treatment of this disorder.

Free access

Wen-Lin Chang, Qing Yang, Hui Zhang, Hai-Yan Lin, Zhi Zhou, Xiaoyin Lu, Cheng Zhu, Li-Qun Xue, and Hongmei Wang

Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.

Open access

Huijuan Liao, Yan Chen, Yulong Li, Shaolong Xue, Mingfeng Liu, Ziyuan Lin, Yanyan Liu, Hsiao Chang Chan, Xiaohu Zhang, and Huaqin Sun

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affect fertility in both sexes. However, the involvement of CFTR in regulating germ cell development remains largely unknown. Here, we used zebrafish model to investigate the role of CFTR in primordial germ cells (PGCs) development. We generated a cftr frameshift mutant zebrafish line using CRISPR/Cas9 technique and investigated the migration of PGCs during early embryo development. Our results showed that loss of Cftr impairs the migration of PGCs from dome stages onward. The migration of PGCs was also perturbed by treatment of CFTRinh-172, a gating-specific CFTR channel inhibitor. Moreover, defected PGCs migration in cftr mutant embryos can be partially rescued by injection of WT but not other channel-defective mutant cftr mRNAs. Finally, we observed the elevation of cxcr4b, cxcl12a, rgs14a and ca15b, key factors involved in zebrafish PGCs migration, in cftr-mutant zebrafish embryos. Taken together, the present study revealed an important role of CFTR acting as an ion channel in regulating PGCs migration during early embryogenesis. Defect of which may impair germ cell development through elevation of key factors involved in cell motility and response to chemotactic gradient in PGCs.

Open access

Yu-chen Zhang, Xiao-li Qin, Xiao-ling Ma, Hui-qin Mo, Shi Qin, Cheng-xi Zhang, Xiao-wei Wei, Xue-qing Liu, Yan Zhang, Fu-ju Tian, and Yi Lin

Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, Western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.

Free access

Xue-Ying Zhang, Yi-Meng Xiong, Ya-Jing Tan, Li Wang, Rong Li, Yong Zhang, Xin-Mei Liu, Xian-Hua Lin, Li Jin, Yu-Ting Hu, Zhen-Hua Tang, Zheng-Mu Wu, Feng-Hua Yin, Zheng-Quan Wang, Ye Xiao, Jian-Zhong Sheng, and He-Feng Huang

Fertilization failure often occurs during in vitro fertilization (IVF) cycles despite apparently normal sperm and oocytes. Accumulating evidence suggests that mitochondria play crucial roles in the regulation of sperm function and male fertility. 3-Nitrophthalic acid (3-NPA) can induce oxidative stress in mitochondria, and melatonin, as an antioxidant, can improve mitochondrial function by reducing mitochondrial oxidative stress. The role of sperm mitochondrial dysfunction in fertilization failure during IVF is unclear. The present study revealed that spermatozoa with low, or poor, fertilization rates had swollen mitochondria, increased mitochondria-derived ROS, and attenuated mitochondrial respiratory capacity. 3-NPA treatment enhanced mitochondrial dysfunction in sperm. Spermatozoa with poor fertilization rates, and spermatozoa treated with 3-NPA, had reduced penetration ability. The concentration of melatonin was decreased in semen samples with low and poor fertilization rates. Melatonin, not only decreased excessive mitochondria-derived ROS, but also ‘rescued’ the reduced penetration capacity of spermatozoa treated with 3-NPA. Taken together, the study suggested that mitochondria-derived ROS and mitochondrial respiratory capacity are independent bio-markers for sperm dysfunction, and melatonin may be useful in improving sperm quality and overall male fertility.

Restricted access

Qiu-Chan Qu, Hui-Hui Shen, Cheng-Jie Wang, Xin-Yan Zhang, Jiang-Nan Wu, Hang-Cheng Lu, Xue-Min Qiu, Jia-Yi Ding, Xiao-Fang Tan, Li-Bing Liu, and Ming-Qing Li

A successful pregnancy requires sufficient decidualization of endometrial stromal cells (ESCs). CD82, a metastasis suppressor, is a critical regulator for trophoblast invasion but the effect in decidualization was largely unknown. Here we reported that there was a high level of CD82 in DSC by the immunohistochemistry staining and flow cytometer analysis. Stimulation with prostaglandin E2 (PGE2) elevated the expression of CD82 in ESCs. In contrast, celecoxib, a selective COX-2 inhibitor, significantly downregulated the expression of CD82 in decidual stromal cells (DSCs). Bioinformatics analysis and further research showed that recombinant human interleukin (IL)-1β protein (rhIL-1β) upregulated CD82 in ESCs. Of note, blocking IL-1β signaling with anti-human IL-1β neutralizing antibody could reverse the stimulatory effect of PGE2 on CD82 in ESCs. Silencing CD82 resulted in the decease of the decidualization markers PRL and IGFBP1 mRNA levels in DSCs. More importantly, we observed rhIL-1β also upregulated the expression of COX-2, and the upregulation of PRL and IGFBP1 induced by rhIL-1β could be abolished by celecoxib in ESCs or CD82 deficiency in DSCs. This study suggests that CD82 should be a novel promotor for decidualization under a positive regulation of the COX-2/PGE2/IL-1β positive feedback loop.