Search Results

You are looking at 1 - 10 of 13 items for

  • Author: Lu Zhang x
  • All content x
Clear All Modify Search
Free access

Ruixiu Zhang, Lu Wang, Hexia Xia, and Wei Zhang

Free access

Ruizhi Deng, Chengquan Han, Lu Zhao, Qing Zhang, Beifen Yan, Rui Cheng, Biao Wei, Peng Meng, Tingchao Mao, Yong Zhang, and Jun Liu

Endogenous retroviruses (ERVs), which are abundant in mammalian genomes, can modulate the expression of nearby genes, and their expression is dynamic and stage-specific during early embryonic development in mice and humans. However, the functions and mechanisms of ERV elements in regulating embryonic development remain unclear. Here, we utilized several methods to determine the contribution of ERVs to the makeup and regulation of transcripts during embryonic genome activation (EGA). We constructed an ERV library and embryo RNA-seq library (IVF_2c and IVF_8c) of goat to serve as our research basis. The GO and KEGG analysis of nearby ERV genes revealed that some ERV elements may be associated with embryonic development. RNA-seq results were consistent with the features of EGA. To obtain the transcripts derived from the ERV sequences, we blasted the ERV sequences with embryonic transcripts and identified three lncRNAs and one mRNA that were highly expressed in IVF-8c rather than in IVF-2c (q-value <0.05). Then, we validated the expression patterns of nine ERV-related transcripts during early developmental stages and knocked down three high-expression transcripts in EGA. The knockdown of lncRNA TCONS_00460156 or mRNA HSD17B11 significantly decreased the developmental rate of IVF embryos. Our findings suggested that some transcripts from ERVs are essential for the early embryonic development of goat, and analyzing the ERV expression profile during goat EGA may help elucidate the molecular mechanisms of ERV in regulating embryonic development.

Free access

Min An, Dong Li, Ming Yuan, Qiuju Li, Lu Zhang, and Guoyun Wang

Endometrial cells and microenvironment are two important factors in the pathogenesis of adenomyosis. Our previous study demonstrated that macrophages can induce eutopic epithelial cells of adenomyosis to suffer from epithelial–mesenchymal transition (EMT). The aim of this study is to detect whether macrophages interacting with epithelial cells equally induce the EMT process in normal and eutopic endometria of healthy and adenomyotic patients; and whether macrophages parallelly polarize to M2. We investigated the expression levels of epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), cytokeratin7 (CK7), vimentin, transforming growth factor-β1 (TGFB1), SMAD3 and pSMAD3 using immunohistochemistry and western blot, and then estimated the genetic levels of CD163, IL10 and MMP12 using real-time quantitative polymerase chain reaction (RT-PCR) in macrophages. Eutopic and normal endometrial tissues were obtained from 20 patients with adenomyosis and 11 control patients without adenomyosis, respectively. The immunohistochemical analysis shows distinct EMT in eutopic endometria in secretory phase; the expression levels of TGFB1, SMAD3 and pSMAD3 that indicate signal pathway of EMT were also higher in secretory phase. Macrophages can induce EMT process in primary endometrial epithelial cells derived from normal and eutopic endometria. After co-culturing, THP-1-derived macrophages polarized to M2. Compared with the eutopic endometrium group, further polarization to M2 was observed in the normal endometrium group. These results indicate that adenomyosis may be promoted by the pathologic EMT of epithelial cells, which is induced by macrophages that incapably polarize to M2.

Restricted access

Zijing Zhang, Florencia Schlamp, Lu Huang, Haley Clark, and Lynae Brayboy

The fertility of women declines sharply after age 35 and is essentially lost upon menopause at age 51. The ovary plays an important part in aging-associated changes in women’s physiology since it is an essential component of both the reproductive and endocrine systems. Several previous studies in mice have shown that the ovarian tissue goes through drastic changes over the course of aging and exhibits signs of aging-associated chronic inflammation (inflammaging), which may contribute to the marked decline of oocyte quality in aged individuals. To further examine aging-associated gene expression changes in the ovary and to characterize the development of inflammaging, we performed detailed transcriptomic analysis of whole ovaries from mice of six different age groups over the mouse reproductive lifespan and identified more than 5000 genes with significant expression change over the course of aging. Intriguingly, we found aging-associated changes in the expression of several markers that indicate alterations in the composition of ovarian macrophages, which are known to be central players of inflammaging. Using flow cytometry, we analyzed and compared macrophage populations and polarization in young and old ovaries and found a significant increase in monocyte recruitment and macrophage alternative activation (M2) in the old ovaries compared to those in young. Our results are consistent with previous findings of aging-associated increase of fibrosis in the ovarian stromal extracellular matrix, and they provide new clues about the development of inflammaging in the mammalian ovary.

Free access

Xiaoyan Huang, Jun Zhang, Li Lu, Lanlan Yin, Min Xu, Youqun Wang, Zuomin Zhou, and Jiahao Sha

Identification of genes specifically expressed in adult and fetal testis is important in furthering our understanding of testis development and function. In this study, a novel human transcript, designated human testis cAMP-responsive element-binding protein (htCREB), was identified by hybridization of adult and fetal human testis cDNA probes with a human cDNA microarray containing 9216 clones. The htCREB transcript (GenBank Accession no. AY347527) was expressed at 2.35-fold higher levels in adult human testes than in fetal testes. Sequence and ntBLAST analyses against the human genome database indicated that htCREB was a novel splice variant of human CREB. RT-PCR-based tissue distribution experiments demonstrated that the htCREB transcript was highly expressed in adult human testis and in healthy sperm, but not in testes from patients with Sertoli cell-only syndrome. Taken together, these results suggest that the htCREB transcript is chiefly expressed in germ cells and is most likely involved in spermatogenesis.

Restricted access

Tao Yu, Shuai Lin, Rui Xu, Tian-Xi Du, Yang Li, Hui Gao, Hong-Lu Diao, and Xiu-Hong Zhang

Embryo implantation is a crucial step for the successful establishment of mammalian pregnancy. Cyclophilin A (CYPA) is a ubiquitously expressed intracellular protein and is secreted in response to inflammatory stimuli to regulate diverse cellular functions. However, there are currently no reports about the role of CYPA in embryo implantation. Here, we examine the expression pattern of CYPA during mouse early pregnancy and explore the potential role of CYPA during implantation. CYPA is expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy, but not at inter-implantation sites. In ovariectomized mice, estrogen and progesterone significantly stimulate CYPA expression. When pregnant mice are injected intraperitoneally with CYPA inhibitor, the numbers of implantation sites are significantly reduced. Using an in vitro stromal cell culture system, Ppia siRNA knockdown of CYPA and CYPA-specific inhibitor treatment partially inhibits levels of CD147, MMP3 and MMP9. Decreased CYPA expression also significantly inhibits Stat3 activity and expands estrogen responsiveness. Taken together, CYPA may play an important role during mouse embryo implantation.

Restricted access

Qi Zhu, Yi-Chao Dong, Lu Zhang, Xu Ma, and Hong-Fei Xia

Missed abortion (MA) is a common disease in obstetrics and gynecology. More and more studies have focused on the relationship between miRNAs and pregnancy maintenance and its related diseases. The aim of this article is to explore the relationship between miRNA and MA. The expression of miR-98 were detected by in situ hybridization and real-time PCR. Cell proliferation, activity and migration were measured via Edu, MTT, and transwell assays. The target genes of miR-98 are identified by dual-luciferase activity assay. And the expression levels of target genes were determined by Western blot, real-time PCR and immunohistochemistry. miR-98 was significantly up-regulated in placental villi from over 35 years old MA patients compared with the age-matched normal pregnant women. Up-regulation of miR-98 suppressed the proliferation, activity and migration of the human trophoblast HTR-8/SVneo cell in vitro. miR-98 could bind to GDF6 and FAPP2 mRNA 3’-UTR and negatively regulate their expression. The downregulation of miR-98 promoted cell proliferation, then knockdown of GDF6 or FAPP2 inhibited miR-98-mediated cell proliferation. GDF6 and FAPP2 expression in the placental villi from MA patients were decreased compared to normal placental tissues. The expression of miR-98 in MA had an opposite relationship with the expression of GDF6 and FAPP2. Overexpression of miR-98 is associated with the occurrence of MA. miR-98 prevents proliferation, viability and migration of trophoblast cells partially through targeting GDF6 and FAPP2.

Free access

Naihong Yan, Yilu Lu, Huaqin Sun, Dachang Tao, Sizhong Zhang, Wenying Liu, and Yongxin Ma

MicroRNAs (miRNAs) are short non-coding RNA molecules playing regulatory roles by repressing translation or cleaving RNA transcripts. Recent studies indicate that miRNAs are mechanistically involved in the development of mammalian spermatogenesis. However, little work has been done to compare the miRNA expression patterns between immature and mature mouse testes. Here, we employed a miRNA microarray to detect 892 miRNAs in order to evaluate the expression patterns of miRNA. The expression of 19 miRNAs was significantly different between immature and mature individuals. Fourteen miRNAs were significantly upregulated and five miRNAs were downregulated in immature mice and this result was further confirmed by a quantitative real-time RT-PCR assay. Many target genes involved in spermatogenesis are predicted by MiRscan performing miRNA target scanning. Our data indicated specific miRNAs expression in immature mouse testis and suggested that miRNAs have a role in regulating spermatogenesis.

Free access

Wen-Lin Chang, Qing Yang, Hui Zhang, Hai-Yan Lin, Zhi Zhou, Xiaoyin Lu, Cheng Zhu, Li-Qun Xue, and Hongmei Wang

Placenta-specific protein 1 (PLAC1), a placenta-specific gene, is known to be involved in the development of placenta in both humans and mice. However, the precise role of PLAC1 in placental trophoblast function remains unclear. In this study, the localization of PLAC1 in human placental tissues and its physiological significance in trophoblast invasion and migration are investigated by technical studies including real-time RT-PCR, in situ hybridization, immunohistochemistry, and functional studies by utilizing cell invasion and migration assays in the trophoblast cell line HTR8/SVneo as well as the primary inducing extravillous trophoblasts (EVTs). The results show that PLAC1 is mainly detected in the trophoblast columns and syncytiotrophoblast of the first-trimester human placental villi, as well as in the EVTs that invade into the maternal decidua. Knockdown of PLAC1 by RNA interference significantly suppresses the invasion and migration of HTR8/SVneo cells and shortens the distance of the outgrowth of the induced EVTs from the cytotrophoblast column of the explants. All the above data suggests that PLAC1 plays an important role in human placental trophoblast invasion and migration.

Free access

Zhenzhen Zhang, Changjiu He, Lu Zhang, Tianqi Zhu, Dongying Lv, Guangdong Li, Yukun Song, Jing Wang, Hao Wu, Pengyun Ji, and Guoshi Liu

α-Ketoglutarate (α-KG) is an intermediary metabolite in the tricarboxylic acid (TCA) cycle and functions to inhibit ATPase and maintain the pluripotency of embryonic stem cells (ESCs); however, little is known regarding the effects of α-KG on the development of preimplantation embryos. Herein, we report that α-KG (150 μM) treatment significantly promoted the blastocyst rate, the number of inner cell mass (ICM) cells and foetal growth after embryo transfer. Mechanistic studies revealed two important pathways involved in the α-KG effects on embryo development. First, α-KG modulates mitochondria function by inducing relatively low ATP production without modification of mitochondrial copy number. The relatively low energy metabolism preserves the pluripotency and competence of the ICM. Second, α-KG modifies epigenetics in embryos cultured in vitro by affecting the activity of the DNA demethylation enzyme TET and the DNA methylation gene Dnmt3a to increase the ratio of 5hmC/5mC ratio. Elevation of the 5hmC/5mC ratio not only promotes the pluripotency of the ICM but also leads to a methylation level in an in vitro embryo close to that in an in vivo embryo. All these functions of α-KG collectively contribute to an increase in the number of ICM cells, leading to greater adaptation of cultured embryos to in vitro conditions and promoting foetal growth after embryo transfer. Our findings provide basic knowledge regarding the mechanisms by which α-KG affects embryo development and cell differentiation.