Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Lu Zhao x
Clear All Modify Search
Full access

Wan-Sheng Liu, Yaqi Zhao, Chen Lu, Gang Ning, Yun Ma, Francisco Diaz and Michael O'Connor

Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is predominantly expressed in normal testicular tissues and a variety of tumors. The function of the PRAME family in spermatogenesis remains unknown. This study was designed to characterize the Y-linked PRAME (PRAMEY) protein during spermatogenesis in cattle. We found that PRAMEY is a novel male germ cell-specific, and a germinal granule-associated protein that is expressed in spermatogenic cells during spermatogenesis. The intact PRAMEY protein (58 kDa) was detected in different ages of testes but not in epididymal spermatozoa. A PRAMEY isoform (30 kDa) was highly expressed only in testes after puberty and in epididymal spermatozoa. This isoform interacts with PP1γ2 and is likely the mature protein present in the testes and sperm. Immunofluorescent staining demonstrated that PRAMEY was located predominantly in the acrosome granule of spermatids, and in acrosome and flagellum of spermatozoa. Immunogold electron microscopy further localized the PRAMEY protein complex to the nucleus and several cytoplasmic organelles, including the rough endoplasmic reticulum, some small vesicles, the intermitochondrial cement, the chromatoid body and the centrioles, in spermatogonia, spermatocytes, spermatids and/or spermatozoa. PRAMEY was highly enriched in and structurally associated with the matrix of the acrosomal granule (AG) in round spermatids, and migrated with the expansion of the AG during acrosomal biogenesis. While the function of PRAMEY remains unclear during spermatogenesis, our results suggest that PRAMEY may play an essential role in acrosome biogenesis and spermatogenesis.

Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC2

Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC3

Full access

Jing Cong, Hong-Lu Diao, Yue-Chao Zhao, Hua Ni, Yun-Qin Yan and Zeng-Ming Yang

It has been shown that both prostaglandin I2 (PGI2) and PGE2 are essential for mouse implantation, whereas only PGE2 is required for hamster implantation. To date, the expression and regulation of cyclooxygenase (COX) and prostaglandin E synthase (PGES), which are responsible for PGE2 production, have not been reported in the rat. The aim of this study was to examine the expression pattern and regulation of COX-1, COX-2, membrane-associated PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in rat uterus during early pregnancy and pseudopregnancy, and under delayed implantation. At implantation site on day 6 of pregnancy, COX-1 immunostaining was highly visible in the luminal epithelium, and COX-2 immunostaining was clearly observed in the subluminal stroma. Both mPGES-1 mRNA and protein were only observed in the subluminal stroma surrounding the implanting blastocyst at the implantation site on day 6 of pregancy , but were not seen in the inter-implantation site on day 6 of pregnancy and on day 6 of pseudopregnancy. Our data suggest that the presence of an active blastocyst is required for mPGES-1 expression at the implantation site. When pregnant rats on day 5 were treated with nimesulide for 24 h, mPGES-1 protein expression was completely inhibited. cPGES immunostaining was clearly observed in the luminal epithelium and subluminal stromal cells immediately surrounding the implanting blastocyst on day 6 of pregnancy. mPGES-2 immunostaining was clearly seen in the luminal epithelium at the implantation site. Additionally, immunostaining for prostaglandin I synthase (PGIS) was also strongly detected at the implantation site. In conclusion, our results indicate that PGE2 and PGI2 should have a very important role in rat implantation.

Full access

Muyun Wei, Ying Gao, Bingru Lu, Yulian Jiao, Xiaowen Liu, Bin Cui, Shengnan Hu, Linying Sun, Shaowei Mao, Jing Dong, Lei Yan, Zijiang Chen and Yueran Zhao

Defective decidualization of human endometrial stromal cells (ESCs) has recently been highlighted as an underlying cause of implantation failure. FK-506-binding protein 51 (FKBP51) has been shown to participate in the steroid hormone response and the protein kinase B (AKT) regulation process, both of which are important pathways involved in decidualization. The objective of the present study was to investigate the potential effects and mechanisms of FKBP51 in the regulation of ESC decidualization. By performing immunohistochemical staining on an endometrial tissue microarray (TMA) derived from normal females, we found that FKBP51 expression was much higher in the luteal phase than in the follicular phase in ESCs. Primary ESCs were isolated from patients to build an in vitro decidualization model through co-culture with medroxyprogesterone acetate (MPA) and 8-bromoadenosine (cAMP). SC79, a specific AKT activator in various physiological and pathological conditions, and shRNA-FKBP51 were used to examine the roles of AKT and FKBP51 in decidualization. The Western blot and RT-PCR results showed that FKBP51, insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL) expression increased in ESCs treated with MPA + cAMP; meanwhile, the level of p-Ser473 AKT (p-S473 AKT) decreased and forkhead box protein O1 (FOXO1A) expression increased. Decidualization was inhibited by the AKT activator SC79 and the transfection of FKBP51-shRNA by affecting protein synthesis, cell morphology, cell growth and cell cycle. Furthermore, this inhibition was rescued by FKBP51-cDNA transfection. The results supported that FKBP51 promotes decidualization by reducing the Ser473 phosphorylation levels in AKT.

Full access

Ruizhi Deng, Chengquan Han, Lu Zhao, Qing Zhang, Beifen Yan, Rui Cheng, Biao Wei, Peng Meng, Tingchao Mao, Yong Zhang and Jun Liu

Endogenous retroviruses (ERVs), which are abundant in mammalian genomes, can modulate the expression of nearby genes, and their expression is dynamic and stage specific during early embryonic development in mice and humans. However, the functions and mechanisms of ERV elements in regulating embryonic development remain unclear. Here, we utilized several methods to determine the contribution of ERVs to the makeup and regulation of transcripts during embryonic genome activation (EGA). We constructed an ERV library and embryo RNA-seq library (IVF_2c and IVF_8c) of goat to serve as our research basis. The GO and KEGG analysis of nearby ERV genes revealed that some ERV elements may be associated with embryonic development. RNA-seq results were consistent with the features of EGA. To obtain the transcripts derived from the ERV sequences, we blasted the ERV sequences with embryonic transcripts and identified three lncRNAs and one mRNA that were highly expressed in IVF-8c rather than in IVF-2c (q-value < 0.05). Then, we validated the expression patterns of nine ERV-related transcripts during early developmental stages and knocked down three high-expression transcripts in EGA. The knockdown of lncRNA TCONS_00460156 or mRNA HSD17B11 significantly decreased the developmental rate of IVF embryos. Our findings suggested that some transcripts from ERVs are essential for the early embryonic development of goat, and analyzing the ERV expression profile during goat EGA may help elucidate the molecular mechanisms of ERV in regulating embryonic development.