Search Results

You are looking at 1 - 6 of 6 items for

  • Author: M Diez x
  • Refine by Access: All content x
Clear All Modify Search
Free access

L. C. García Díez, J. M. Gonzalez Buitrago, J. J. Corrales, E. Battaner, and J. M. Miralles

Summary. Hormone concentrations in the serum and seminal plasma of 15 normozoospermic, 17 excretory azoospermic and 14 secretory azoospermic men were measured. The results indicate that: (a) serum FSH and LH levels are markedly elevated in secretory azoospermia, as compared with excretory azoospermia and normozoospermia; (b) serum 17α-hydroxyprogesterone levels are somewhat raised in secretory azoospermia as compared with excretory azoospermia and normozoospermia; (c) serum testosterone levels are lower in both types of azoospermia with respect to normozoospermia; (d) in secretory azoospermia the oestradiol serum levels are relatively high and dihydrotestosterone serum levels relatively low, whereas the serum levels of these hormones in excretory azoospermia are similar to those in normozoospermic men; (e) in the seminal plasma of azoospermic patients the levels of prolactin, progesterone, testosterone, dihydrotestosterone and oestradiol were depressed, but only dihydrotestosterone levels could be of value in differentiating types of azoospermia because they are lower in secretory azoospermia.

We suggest that the measurement of FSH, LH, 17α-hydroxyprogesterone, dihydrotestosterone and oestradiol in serum and dihydrotestosterone in seminal plasma may be used in the differential diagnosis between secretory and excretory azoospermia when invasive tests are unavailable.

Free access

C Fernández-Díez, S González-Rojo, M Lombó, and M P Herráez

Zygotic repair of paternal DNA is essential during embryo development. In spite of the interest devoted to sperm DNA damage, its combined effect with defect-repairing oocytes has not been analyzed. Modification of the breeding season is a common practice in aquaculture. This practice reduces developmental success and could affect the both factors: sperm DNA integrity and oocyte repair capacity. To evaluate the maternal role, we analyzed the progeny outcome after fertilizing in-season trout oocytes with untreated and with UV-irradiated sperm. We also analyzed the offspring obtained out of season with untreated sperm. The analysis of the number of lesions in 4 sperm nuclear genes revealed an increase of 1.22–11.18 lesions/10 kb in out-of-season sperm, similar to that obtained after sperm UV irradiation (400 µW/cm25 min). Gene expression showed in out-of-season oocytes the overexpression of repair genes (ogg1, ung, lig3, rad1) and downregulation of tp53, indicating an enhanced repairing activity and reduced capacity to arrest development upon damage. The analysis of the progeny in out-of-season embryos revealed a similar profile tolerant to DNA damage, leading to a much lower apoptotic activity at organogenesis, lower hatching rates and increased rate of malformations. The effects were milder in descendants from in-season-irradiated sperm, showing an enhanced repairing activity at epibolia. Results point out the importance of the repairing machinery provided by the oocyte and show how susceptible it is to environmental changes. Transcripts related to DNA damage signalization and repair could be used as markers of oocyte quality.

Free access

P J Torres, E M Luque, M F Ponzio, V Cantarelli, M Diez, S Figueroa, L M Vincenti, V P Carlini, and A C Martini

The purpose of this study was to evaluate the intragestational role of ghrelin in offspring development and reproductive programming in a mouse model of ghrelin imbalance during pregnancy. Female mice were injected with ghrelin (supraphysiological levels: 4 nmol/animal/day), antagonist (endogenous ghrelin inhibition with (D-Lys3)GHRP-6, 6 nmol/animal/day) or vehicle (control = normal ghrelin levels) throughout the pregnancy. Parameters evaluated in litters were growth, physical, neurobiological and sexual development and, at adulthood, reproductive function. Litter size and initial weight did not vary between treatments. Male pups from dams treated with ghrelin showed higher body weight increase until adulthood (31.7 ± 0.8 vs control = 29.7 ± 0.7, n = 11–14 litters/treatment; P < 0.05). Postnatal physical and neurobiological development was not modified by treatments. The antagonist accelerated male puberty onset, evidenced as earlier testis descent and increased relative testicular weight (antagonist = 0.5 ± 0.0% vs ghrelin = 0.4 ± 0.0% and control = 0.4 ± 0.0%, n = 5–10 litters/treatment; P < 0.05). At adulthood, these males exhibited lower relative testicular weight and reduced sperm motility (63.9 ± 3.6% vs control = 70.9 ± 3.3 and ghrelin = 75.6 ± 3.0, n = 13–15 animals; P < 0.05), without changes in plasma testosterone or fertility. Female pups intragestationally exposed to the antagonist showed earlier vaginal opening (statistically significant only at Day 25) and higher ovarian volume (antagonist = 1085.7 ± 64.0 mm3 vs ghrelin = 663.3 ± 102.8 mm3 and control = 512.3 ± 116.4 mm3; n = 4–6 animals/treatment; P < 0.05), indicating earlier sexual maturation. At adulthood, these females and those exposed to ghrelin showed a tendency to higher percentages of embryo loss and/or foetal atrophy. In conclusion, ghrelin participates in reproductive foetal programming: alterations in ghrelin activity during pregnancy modified body weight increase and anticipated puberty onset, exerting (or tending to) negative effects on adult reproductive function.

Free access

E Gómez, E Correia-Álvarez, J N Caamaño, C Díez, S Carrocera, N Peynot, D Martín, C Giraud-Delville, V Duranthon, O Sandra, and M Muñoz

Early in cow embryo development, hepatoma-derived growth factor (HDGF) is detectable in uterine fluid. The origin of HDGF in maternal tissues is unknown, as is the effect of the induction on developing embryos. Herein, we analyze HDGF expression in day 8 endometrium exposed to embryos, as well as the effects of recombinant HDGF (rHDGF) on embryo growth. Exposure to embryos did not alter endometrial levels of HDGF mRNA or protein. HDGF protein localized to cell nuclei in the luminal epithelium and superficial glands and to the apical cytoplasm in deep glands. After uterine passage, levels of embryonic HDGF mRNA decreased and HDGF protein was detected only in the trophectoderm. In fetal fibroblast cultures, addition of rHDGF promoted cell proliferation. In experiments with group cultures of morulae in protein-free medium containing polyvinyl alcohol, adding rHDGF inhibited blastocyst development and did not affect cell counts when the morulae were early (day 5), whereas it enhanced blastocyst development and increased cell counts when the morulae were compact (day 6). In cultures of individual day 6 morulae, adding rHDGF promoted blastocyst development and increased cell counts. Our experiments with rHDGF indicate that the growth factor stimulates embryonic development and cell proliferation. HDGF is synthesized similarly by the endometrium and embryo, and it may exert embryotropic effects by autocrine and/or paracrine mechanisms.

Free access

C Fernández-Díez, S González-Rojo, J Montfort, A Le Cam, J Bobe, V Robles, S Pérez-Cerezales, and M P Herráez

Zygotic repair of the paternal genome is a key event after fertilization. Spermatozoa accumulate DNA strand breaks during spermatogenesis and can suffer additional damage by different factors, including cryopreservation. Fertilization with DNA-damaged spermatozoa (DDS) is considered to promote implantation failures and abortions, but also long-term effects on the progeny that could be related with a defective repair. Base excision repair (BER) pathway is considered the most active in zygotic DNA repair, but healthy oocytes contain enzymes for all repairing pathways. In this study, the effects of the inhibition of the BER pathway in the zygote were analyzed on the progeny obtained after fertilization with differentially DDS. Massive gene expression (GE; 61 657 unique probes) was analyzed after hatching using microarrays. Trout oocytes are easily fertilized with DDS and the high prolificacy allows live progeny to be obtained even with a high rate of abortions. Nevertheless, the zygotic inhibition of Poly (ADP-ribose) polymerase, upstream of BER pathway, resulted in 810 differentially expressed genes (DEGs) after hatching. DEGs are related with DNA repair, apoptosis, telomere maintenance, or growth and development, revealing a scenario of impaired DNA damage signalization and repair. Downregulation of the apoptotic cascade was noticed, suggesting a selection of embryos tolerant to residual DNA damage during embryo development. Our results reveal changes in the progeny from defective repairing zygotes including higher malformations rate, weight gain, longer telomeres, and lower caspase 3/7 activity, whose long-term consequences should be analyzed in depth.

Free access

C Hidalgo, C Díez, P Duque, J M Prendes, A Rodríguez, F Goyache, I Fernández, N Facal, S Ikeda, C Alonso-Montes, and E Gómez

Retinoids have been shown to enhance developmental competence of the oocyte in cattle, sheep and pigs. In this study we investigated whether exogenous retinol stimulates the bovine oocyte during its intrafollicular growth and the time limits of exposure to exogenous retinol. In addition, we also determined the efficiency of ovum pick-up techniques in combination with retinol treatment and the viability of embryos after transfer to recipients. In Experiment 1, heifers were injected with retinol or vehicle, and concentrations of retinol in the blood were analysed on Day 0 (prior to injection), Day 1 and, together with follicular fluid, Day 4. Blood retinol increased by Day 1 and cleared on Day 4, but retinol remained higher within the follicle. In Experiment 2, oocyte donors were injected weekly with retinol or vehicle four times during a twice-per-week cycle of eight recovery sessions (starting 4 days before the first session), followed by a second eight-session cycle without treatment. Oocytes recovered were fertilized and cultured in vitro. Retinol treatment yielded higher numbers of low-quality oocytes throughout, although retinol measured during cycles did not change. Total oocytes, and morulae and blastocyst rates, increased during the first five sessions following treatment with retinol. As previously shown with oocytes from slaughterhouse ovaries, retinoic acid stimulated blastocyst development. Following transfer to recipients, blastocysts from oocytes exposed to retinol were unable to establish pregnancy. Our study confirms the existence of an effect of retinol on the intrafollicular oocyte in the cow and provides evidence regarding the teratogenic effect of retinol.