Search Results

You are looking at 1 - 2 of 2 items for

  • Author: MC Wiltbank x
Clear All Modify Search
Free access

SJ Tsai and MC Wiltbank

Prostaglandins have been implicated in various aspects of ovarian function including ovulation and luteolysis. In this study, the expression and regulation of inducible prostagland in G/H synthase (PGHS-2) and PGF(2alpha) receptors were investigated in bovine granulosa cells at various stages of differentiation. Firstly, the induction of PGF(2alpha) receptor mRNA and PGHS-2 mRNA in preovulatory granulosa cells was evaluated. Granulosa cells were collected from preovulatory follicles and cultured for 1, 4, 7 or 10 days. Cells were treated with hCG (10 iu) or with increasing doses of forskolin (0-10 micromol l(-1)) for 24 h. Forskolin increased steady-state concentrations of mRNA for PGHS-2 (> 20-fold) and PGF(2alpha) receptor (> 1000-fold) in a dose-dependent fashion. Use of selective protein kinase A inhibitor (H89) reduced both hCG- and forskolin-induced expression of PGF(2alpha) receptor mRNA and PGHS-2 mRNA. The hypothesis that luteinized granulosa cells would acquire PGF(2alpha) responsiveness similar to responses to PGF(2alpha) observed in vivo was also evaluated. Treatment with PGF(2alpha) (100 nmol l(-1)) reduced forskolin-induced expression of PGF(2alpha) receptor mRNA on days 4, 7 and 10, but not on day 1 of culture (n = 3). Treatment with PGF(2alpha) did not change forskolin-induced expression of PGHS-2 mRNA on or before day 4 of culture. In contrast, PGF(2alpha) significantly increased PGHS-2 mRNA expression in granulosa cells primed with forskolin for 7 or 10 days. In conclusion, expression of PGHS-2 and PGF(2alpha) receptor mRNA is protein kinase A-dependent in preovulatory bovine granulosa cells. Granulosa cells become PGF(2alpha)-responsive soon after expression of PGF(2alpha) receptor, whereas further differentiation is required before PGF(2alpha) induces PGHS-2 mRNA upregulation. These results demonstrate that at least two key transitions are required in PGF(2alpha)-induced luteal regression in the mid-cycle corpus luteum.

Free access

SJ Tsai, K Kot, OJ Ginther and MC Wiltbank

There is growing evidence to indicate that PGF(2alpha)-induced luteolysis involves altered gene expression in the corpus luteum. Concentrations of mRNA encoding nine different gene products were quantified at three time points from corpora lutea in situ. Serial luteal biopsies (2.1-5.5 mg per biopsy) were collected using an ultrasound-guided transvaginal method and mRNA concentrations were quantified with standard curve quantitative competitive RT-PCR. In the first experiment, three luteal biopsies were collected from three heifers and analysed in multiple assays to evaluate the repeatability of the methods. Concentrations of mRNA for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), PGF(2alpha) receptor (FP receptor) and LH receptor were found to be highly repeatable between assays, between multiple biopsies and between animals (coefficients of variation 1.3-17.3%). In the second experiment, heifers on days 9-11 after ovulation were assigned randomly to receive saline only (n = 6), saline with biopsies taken at t = 0, 0.5 and 4.0 h after injection (n = 6), PGF(2alpha) only (n = 6) or PGF(2alpha) with biopsies taken at t = 0, 0.5 and 4.0 h after treatment (n = 7). Biopsy alone did not change corpus luteum diameter, serum progesterone concentrations or days to next ovulation within the saline- or PGF(2alpha)-treated groups. Concentrations of mRNA for steroidogenic acute regulatory protein, FP receptor, 3beta-hydroxysteroid dehydrogenase, cytosolic phospholipase A(2) and LH receptor were decreased at 4.0 h after PGF(2alpha) injection. In contrast, PGF(2alpha) increased mRNA concentrations for prostaglandin G/H synthase-2, monocyte chemoattractant protein-1 and c-fos but the time course differed for induction of these mRNAs. Concentrations of mRNA for GAPDH did not change after PGF(2alpha) treatment. In conclusion, the techniques allowed analysis of multiple, specific mRNAs in an individual corpus luteum at multiple time points without altering subsequent luteal function. Use of these techniques confirmed that luteolysis involves both up- and downregulation of specific mRNA by PGF(2alpha).