Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mansour Aboelenain x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Cecilia S Blengini, Gyu Ik Jung, Mansour Aboelenain, and Karen Schindler

In brief

The Aurora protein kinases have critical functions in controlling oocyte meiotic maturation. In this study, we describe an assay for examining their activation state in oocytes and establish the best working doses of three commonly used inhibitors.


Several small molecule inhibitors exist for targeting Aurora kinase proteins in somatic cells. From this point of view, we evaluate the specificity of these inhibitors in mouse oocytes, and we demonstrate that MLN 8237 and AZD 1152 are specific for Aurora kinase A and Aurora kinase C, respectively, only when used at low concentrations.

Free access

Ahmed Z Balboula, Mansour Aboelenain, Jianye Li, Hanako Bai, Manabu Kawahara, Mohammed A Abdel-Ghani, and Masashi Takahashi

Improving the quality and the developmental competence of in vitro produced (IVP) embryos is an indispensable goal for assisted reproductive technology. Autophagy is a major protective mechanism for intracellular degradation of unnecessary cytoplasmic components. Autophagy ends by the fusion between autophagic vacuoles and lysosomes, allowing the degradation of the cargo by lysosomal enzymes, especially the cathepsins (CTSs). However, it is still unclear how autophagy and cathepsin K (CTSK) relate to embryo development. This study evaluated (1.) the activities of autophagy and CTSK in relation to bovine embryo quality and (2.) the effect of autophagy induction and/or CTSK inhibition on preimplantation embryo development and quality. We show here that good-quality embryos exhibited a greater autophagic activity and less CTSK activity compared to poor-quality embryos. Blastomeres of an individual embryo may vary in their quality. Good quality blastomeres showed an increased autophagic activity and decreased CTSK activity compared to poor-quality blastomeres within the same embryo at different developmental stages. Importantly, induction of autophagy and/or inhibition of CTSK improved the developmental rate (increased blastocyst and hatching rates) and the quality (increased total cell number and decreased the percentage of apoptotic cells) of IVP bovine embryos. These results demonstrate a promising approach to selectively isolate good-quality embryos and improve the efficiency of IVEP of cattle embryos.