Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Mariana Sponchiado x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Felipe A. C. C. Silva, Thiago Martins, Mariana Sponchiado, Cecilia C. Rocha, Nadia Ashrafi, Stewart F. Graham, Ky Pohler, Francisco Peñagaricano, Angela Gonella-Diaza, and Mario Binelli

In cattle, the concentration of sex steroids modulates uterine function, which is reflected in the composition of the luminal metabolome. Ultimately, the uterine luminal metabolome influences embryonic growth and development. Our objectives were (1) to compare the luminal metabolome 4, 7, and 14 days after estrus of cows that were exposed to greater (HP4; n = 16) vs. lower (LP4; n = 24) concentrations of progesterone before displaying estrus and ovulating spontaneously and (2) to identify changes in the luminal concentration of metabolites across these time points. Luminal epithelial cells and fluid were collected using a cytology brush and gene expression and metabolite concentrations were assessed by RNAseq and targeted mass spectrometry, respectively. Metabolome profile was similar between treatments within each of days 4, 7, and 14 (FDR ≥ 0.1). Concentrations of 53 metabolites changed, independent of treatment, across the diestrus. Metabolites were mostly lipids (40 out 53) and the greatest concentrations were at d 14 (FDR ≤ 0.1). On d 7, the concentration of putrescine and the gene expression of ODC1, PAOX, SLC3A2, and SAT1 increased (P ≤ 0.05). On d 14, the concentration of three ceramides, four glucosylceramides, and 12 sphingomyelins and the expression of SGMS2 were increased, in addition to the concentration of choline and 20 phosphatidylcholines. Collectively, the post-estrus concentration of luminal metabolites changed dynamically, independent of the concentration of sex steroids on the previous cycle, and the greatest magnitude changes were on day 14, when lipid metabolism was the most enriched pathway.

Free access

Mariana Sponchiado, Waleed F A Marei, Gerrit T S Beemster, Peter E J Bols, Mario Binelli, and Jo L M R Leroy

In cattle, pre-implantation embryo development occurs within the confinement of the uterine lumen. Current understanding of the bi-lateral molecular interactions between embryo and endometrium that are required for a successful pregnancy is limited. We hypothesized that the nature and intensity of reciprocal embryo-endometrium interactions depend on the extent of their physical proximity. Bovine endometrial epithelial cells (bEECs) and morulae were co-cultured in juxtacrine (Contact+) or non-juxtacrine (Contact−) apposition. Co-culture with bEECs improved blastocyst rates on day 7.5, regardless of juxtaposition. Contact+ regulated transcription of 1797 endometrial genes vs only 230 in the Contact− group compared to their control (no embryos) counterparts. A subset of 50 overlapping differentially expressed genes (DEGs) defined embryo-induced effects on bEEC transcriptome irrespective of juxtaposition. Functional analysis revealed pathways associated with interferon signaling and prostanoid biosynthesis. A total of 175 genes displayed a graded expression level depending on Contact+ or Contact−. These genes were involved in interferon-related and antigen presentation pathways. Biological processes enriched exclusively in Contact+ included regulation of cell cycle and sex-steroid biosynthesis. We speculate that, in vivo, embryonic signals fine-tune the function of surrounding cells to ultimately maximize pregnancy success.