Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Marta Czernik x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Helena Fulka, Pasqualino Loi, Marta Czernik, Azim Surani, and Josef Fulka

In brief

Understanding the establishment of post-fertilization totipotency has broad implications for modern biotechnologies. This review summarizes the current knowledge of putative egg components governing this process following natural fertilization and after somatic cell nuclear transfer.

Abstract

The mammalian oocyte is a unique cell, and comprehending its physiology and biology is essential for understanding fertilization, totipotency and early events of embryogenesis. Consequently, research in these areas influences the outcomes of various technologies, for example, the production and conservation of laboratory and large animals with rare and valuable genotypes, the rescue of the species near extinction, as well as success in human assisted reproduction. Nevertheless, even the most advanced and sophisticated reproductive technologies of today do not always guarantee a favorable outcome. Elucidating the interactions of oocyte components with its natural partner cell – the sperm or an ‘unnatural’ somatic nucleus, when the somatic cell nucleus transfer is used is essential for understanding how totipotency is established and thus defining the requirements for normal development. One of the crucial aspects is the stoichiometry of different reprogramming and remodeling factors present in the oocyte and their balance. Here, we discuss how these factors, in combination, may lead to the formation of a new organism. We focus on the laboratory mouse and its genetic models, as this species has been instrumental in shaping our understanding of early post-fertilization events.

Free access

Pasqualino Loi, Luca Palazzese, Pier Augusto Scapolo, Josef Fulka Jr, Helena Fulka, and Marta Czernik

The birth of Dolly through somatic cell nuclear transfer (SCNT) was a major scientific breakthrough of the last century. Yet, while significant progress has been achieved across the technics required to reconstruct and in vitro culture nuclear transfer embryos, SCNT outcomes in terms of offspring production rates are still limited. Here, we provide a snapshot of the practical application of SCNT in farm animals and pets. Moreover, we suggest a path to improve SCNT through alternative strategies inspired by the physiological reprogramming in male and female gametes in preparation for the totipotency required after fertilization. Almost all papers on SCNT focused on nuclear reprogramming in the somatic cells after nuclear transfer. We believe that this is misleading, and even if it works sometimes, it does so in an uncontrolled way. Physiologically, the oocyte cytoplasm deploys nuclear reprogramming machinery specifically designed to address the male chromosome, the maternal alleles are prepared for totipotency earlier, during oocyte nuclear maturation. Significant advances have been made in remodeling somatic nuclei in vitro through the expression of protamines, thanks to a plethora of data available on spermatozoa epigenetic modifications. Missing are the data on large-scale nuclear reprogramming of the oocyte chromosomes. The main message our article conveys is that the next generation nuclear reprogramming strategies should be guided by insights from in-depth studies on epigenetic modifications in the gametes in preparation for fertilization.