Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Masatoshi Ooga x
Clear All Modify Search
Free access

Yoshiaki Tanabe, Hiroki Kuwayama, Sayaka Wakayama, Hiroaki Nagatomo, Masatoshi Ooga, Satoshi Kamimura, Satoshi Kishigami and Teruhiko Wakayama

Recently, it has become possible to generate cloned mice using a somatic cell nucleus derived from not only F1 strains but also inbred strains. However, to date, all cloned mice have been generated using F1 mouse oocytes as the recipient cytoplasm. Here, we attempted to generate cloned mice from oocytes derived from the ICR-outbred mouse strain. Cumulus cell nuclei derived from BDF1 and ICR mouse strains were injected into enucleated oocytes of both strains to create four groups. Subsequently, the quality and developmental potential of the cloned embryos were examined. ICR oocytes were more susceptible to damage associated with nuclear injection than BDF1 oocytes, but their activation rate and several epigenetic markers of reconstructed cloned oocytes/embryos were similar to those of BDF1 oocytes. When cloned embryos were cultured for up to 4 days, those derived from ICR oocytes demonstrated a significantly decreased rate of development to the blastocyst stage, irrespective of the nuclear donor mouse strain. However, when cloned embryos derived from ICR oocytes were transferred to female recipients at the two-cell stage, healthy cloned offspring were obtained at a success rate similar to that using BDF1 oocytes. The ICR mouse strain is very popular for biological research and less expensive to establish than most other strains. Thus, the results of this study should promote the study of nuclear reprogramming not only by reducing the cost of experiments but also by allowing us to study the effect of oocyte cytoplasm by comparing it between strains.

Restricted access

Naoki Hirose, Sayaka Wakayama, Rei Inoue, Junya Ito, Masatoshi Ooga and Teruhiko Wakayama

Artificial oocyte activation is important for assisted reproductive technologies, such as fertilization with round spermatids (ROSI) or the production of cloned offspring by somatic cell nuclear transfer (SCNT). Recently, phospholipase Cζ (PLCζ)-cRNA was used to mimic the natural process of fertilization, but this method required the serial injection of PLCζ-cRNA and was found to cause damage to the manipulated oocytes. Here we tried to generate offspring derived from oocytes that were fertilized using round spermatid or somatic cell nuclear transfer with the co-injection of PLCζ-cRNA. After co-injecting round spermatids and 20 ng/µL of PLCζ-cRNA into the oocytes, most of them became activated, but the activation process was delayed by more than 1 h. With the co-injection method, the rate of blastocyst formation in ROSI embryos was higher (64%) compared with that of the serial injection method (55%). On another note, when SCNT was performed using the co-injection method, the cloned offspring were obtained with a higher success rate compared with the serial-injection method. However, in either ROSI or SCNT embryos, the birth rate of offspring via the co-injection method was similar to the Sr activation method. The epigenetic status of ROSI and SCNT zygotes that was examined showed no significant difference among all activation methods. The results indicated that although the PLCζ-cRNA co-injection method did not improve the production rate of offspring, this method simplified oocyte activation with less damage, and with accurate activation time in individual oocytes, it can be useful for the basic study of oocyte activation and development.

Free access

Shun-ichiro Kageyama, Honglin Liu, Naoto Kaneko, Masatoshi Ooga, Masao Nagata and Fugaku Aoki

During oocyte growth, chromatin structure is altered globally and gene expression is silenced. To investigate the involvement of epigenetic modifications in the regulation of these phenomena, changes in global DNA methylation and in various histone modifications, i.e. acetylation of H3K9, H3K18, H4K5, and H4K12, and methylation of H3K4 and H3K9, were examined during the growth of mouse oocytes. Immunocytochemical analysis revealed that the signal intensities of all these modifications increased during growth and that fully grown, germinal vesicle (GV)-stage oocytes showed the most modifications. Since acetylation of most of the lysine residues on histones and methylation of H3K4 are associated with active gene expression, the increased levels of these modifications do not seem to be associated with gene silencing in GV-stage oocytes. Given that there are two types of GV-stage oocytes with different chromatin configurations and transcriptional activities, the epigenetic modification statuses of these two types were compared. The levels of all the epigenetic modifications examined were higher in the SN(surrounded nucleolus)-type oocytes, in which highly condensed chromatin is concentrated in the area around the nucleolus and gene expression is silenced than in the NSN(not surrounded nucleolus)-type oocytes, in which less-condensed chromatin does not surround the nucleolus and gene expression is active. In addition, the expression levels of various enzymes that catalyze histone modifications were shown by RT-PCR to increase with oocyte growth. Taken together, the results show that all of the epigenetic modifications increased in a concerted manner during oocyte growth, and suggest that these increases are not associated with gene expression.