Search Results

You are looking at 1 - 10 of 13 items for

  • Author: Ming-Qing Li x
  • All content x
Clear All Modify Search
Free access

Ke-Ming Xie, Xiao-Fan Hou, Ming-Qing Li, and Da-Jin Li

Nometastatic gene 23-H1 (NME1, also known as nm23-H1) is a wide-spectrum tumor metastasis suppressor gene that plays an important role in suppressing the invasion and metastasis of tumor cells. It has been demonstrated that NME1 is also expressed in human first-trimester placenta, but its function at maternal–fetal interface is not clear. The present study aimed to elucidate the biological function of NME1 at the maternal–fetal interface, especially on invasion of the human extravillous cytotrophoblasts (EVCTs). NME1 has been identified in both human trophoblast cells and decidual stromal cells (DSCs) in early pregnancy. We have proved that NME1 silencing in vitro increases the titin protein translation in the invasive EVCTs. Moreover, NME1 can inactivate the phospho-extracellular signal-regulated kinase 1/2 (P-ERK1/2) in trophoblasts in a time-dependent manner, and U0126, an inhibitor of MAPK/ERK, can inhibit partly the enhanced invasiveness and titin expression in trophoblasts induced by NME1 silencing. Interestingly, the expression of NME1 in either villi or decidua is higher significantly in miscarriage than that of the normal early pregnancy. These findings first reveal that the NME1 expressed in trophoblasts and DSCs controls the inappropriate invasion of human first-trimester trophoblast cells via MAPK/ERK1/2 signal pathway, and the overexpression of NME1 at maternal–fetal interface leads to pregnancy wastage.

Free access

Hui-Li Yang, Wen-Jie Zhou, Kai-Kai Chang, Jie Mei, Li-Qing Huang, Ming-Yan Wang, Yi Meng, Si-Yao Ha, Da-Jin Li, and Ming-Qing Li

The dysfunction of NK cells in women with endometriosis (EMS) contributes to the immune escape of menstrual endometrial fragments refluxed into the peritoneal cavity. The reciprocal communications between endometrial stromal cells (ESCs) and lymphocytes facilitate the development of EMS. However, the mechanism of these communications on cytotoxicity of natural killer (NK) cells in endometriotic milieus is still largely unknown. To imitate the local immune microenvironment, the co-culture systems of ESCs from patients with EMS and monocyte-derived macrophages or of ESCs, macrophages and NK cells were constructed. The cytokine levels in the co-culture unit were evaluated by ELISA. The expression of functional molecules in NK cells was detected by flow cytometry (FCM). The NK cell behaviors in vitro were analyzed by cell counting kit-8 and cytotoxic activation assays. After incubation with ESCs and macrophages, the expression of CD16, NKG2D, perforin and IFN-γ, viability and cytotoxicity of NK cells were significantly downregulated. The secretion of interleukin (IL)-1β, IL-10 and transforming growth factor (TGF)-β in the co-culture system of ESCs and macrophages was increased. Exposure with anti-IL-10 receptor β neutralizing antibody (αhIL-10Rβ) or αTGF-β could partly reverse these effects of ESCs and macrophages on NK cells in vitro. These results suggest that the interaction between macrophages and ESCs downregulates cytotoxicity of NK cells possibly by stimulating the secretion of IL-10 and TGF-β, and may further trigger the immune escape of ectopic fragments and promote the occurrence and the development of EMS.

Open access

Jie Mei, Yuan Yan, Shi-Yuan Li, Wen-Jie Zhou, Qun Zhang, Ming-Qing Li, and Hai-Xiang Sun

Decidualization renders the endometrium transiently receptive to an implanting blastocyst although the underlying mechanisms remain incompletely understood. The aim of this study was to determine the role of chemokine CXCL16 and its receptor CXCR6 in the decidualization during pregnancy. Here, the expression of CXCL16 was investigated in endometrial tissues, decidua and placenta in this study. Compared with endometrial tissue, protein expression of CXCL16 was significantly higher in tissues from the fertile control samples, especially in villus. Meanwhile, the primary trophoblast cells and decidual stromal cells (DSCs) secreted more CXCL16 and expressed higher CXCR6 compared to endometrial stromal cells (ESCs) in vitro. Stimulation with the inducer of decidualization (8-bromoadenosine 3′,5′-cyclic with medroxyprogesterone acetate, 8-Br-cAMP plus MPA) significantly upregulated the expression of CXCL16 and CXCR6 in ESCs in vitro. After treatment with exogenous recombinant human CXCL16 (rhCXCL16) or trophoblast-secreted CXLC16, decidualised ESCs showed a significant decidual response, mainly characterised by increased prolactin (PRL) secretion. Simultaneously, PI3K/PDK1/AKT/Cyclin D1 pathway in decidualised ESCs were activated by rhCXCL16, and AKT inhibitor GS 690693 abolished the PRL secretion of ESCs that was triggered by rhCXCL16. Finally, the impaired CXCL16/CXCR6 expression could be observed at the maternal–foetal interface from patients who have experienced spontaneous abortion. This study suggests that the CXCL16/CXCR6 axis contributes to the progression of ESC decidualization by activating PI3K/PDK1/AKT/Cyclin D1 pathway. It unveils a new paradigm at the maternal–foetal interface in which CXCL16 is an initiator for the molecular crosstalk that enhances decidualization of ESCs.

Free access

Hui Li, Yu-Han Meng, Wen-Qing Shang, Li-Bing Liu, Xuan Chen, Min-Min Yuan, Li-Ping Jin, Ming-Qing Li, and Da-Jin Li

Chemokine CCL24, acting through receptor CCR3, is a potent chemoattractant for eosinophil in allergic diseases and parasitic infections. We recently reported that CCL24 and CCR3 are co-expressed by trophoblasts in human early pregnant uterus. Here we prove with evidence that steroid hormones estradiol (E), progesterone (P), and human chorionic gonadotropin (hCG), as well as decidual stromal cells (DSCs) could regulate the expression of CCL24 and CCR3 of trophoblasts. We further investigate how trophoblast-derived CCL24 mediates the function of trophoblasts in vitro, and conclude that CCL24/CCR3 promotes the proliferation, viability and invasiveness of trophoblasts. In addition, analysis of the downstream signaling pathways of CCL24/CCR3 show that extracellular signal-regulated kinases (ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways may contribute to the proliferation, viability and invasiveness of trophoblasts by activating intracellular molecules Ki67 and matrix metallopeptidase 9 (MMP9). However, we did not observe any inhibitory effect on trophoblasts when blocking c-Jun N-terminal kinase (JNK) or p38 pathways. In conclusion, our data suggests that trophoblast-derived CCL24 at the maternal-fetal interface promotes trophoblasts cell growth and invasiveness by ERK1/2 and PI3K pathways. Meanwhile, pregnancy-related hormones (P and hCG), as well as DSCs could up-regulate CCL24/CCR3 expression in trophoblasts, which may indirectly influence the biological functions of trophoblasts. Thus, our results provide a possible explanation for the growth and invasion of trophoblasts in human embryo implantation.

Free access

Jia-Jun Yu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Wen-Qing Shang, Chun-Yan Wei, Kai-Kai Chang, Jun Shao, Ming-Yan Wang, and Ming-Qing Li

Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rβ). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16+NK cells, NKG2D in CD56dimCD16-NK cells, and NKP44 in CD56brightCD16-NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS.

Free access

Da Li, Yue You, Fang-Fang Bi, Tie-Ning Zhang, Jiao Jiao, Tian-Ren Wang, Yi-Ming Zhou, Zi-Qi Shen, Xiu-Xia Wang, and Qing Yang

The importance of autophagy in polycystic ovary syndrome (PCOS)-related metabolic disorders is increasingly being recognized, but few studies have investigated the role of autophagy in PCOS. Here, transmission electron microscopy demonstrated that autophagy was enhanced in the ovarian tissue from both humans and rats with PCOS. Consistent with this, ovarian granulosa cells from PCOS rats showed increases in the autophagy marker protein light chain 3B (LC3B), whereas levels of the autophagy substrate SQSTM1/p62 were decreased. In addition, the ratio of LC3-II/LC3-I was markedly elevated in human PCOS ovarian tissue compared with normal ovarian tissue. Real-time PCR arrays indicated that 7 and 34 autophagy-related genes were down- and up-regulated in human PCOS , Signal-Net, and regression analysis suggested that there are a wide range of interactions among these 41 genes, and a potential network based on EGFR, ERBB2, FOXO1, MAPK1, NFKB1, IGF1, TP53 and MAPK9 may be responsible for autophagy activation in PCOS. Systematic functional analysis of 41 differential autophagy-related genes indicated that these genes are highly involved in specific cellular processes such as response to stress and stimulus, and are linked to four significant pathways, including the insulin, ERBB, mTOR signaling pathways and protein processing in the endoplasmic reticulum. This study provides evidence for a potential role of autophagy disorders in PCOS in which autophagy may be an important molecular event in the pathogenesis of PCOS.

Free access

Xuan-Tong Liu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Jia-Jun Yu, Wen-Jie Zhou, Chun-Jie Gu, Shao-Liang Yang, Yu-Kai Liu, Hui-Li Yang, Feng-Xuan Xu, and Ming-Qing Li

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-β neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-β and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.

Free access

Yu-Yin Liu, Yu-Kai Liu, Wen-Ting Hu, Ling-Li Tang, Yan-Ran Sheng, Chun-Yan Wei, Ming-Qing Li, and Xiao-Yong Zhu

Endometriosis (EMS) is a chronic inflammatory disease characterized by the presence of extrauterine endometrial tissues. It has been previously reported that the refluxed blood containing viable endometrial tissues and the defective elimination of peritoneal macrophages in the pelvic cavity may involve in EMS pathogenesis. However, the mechanism by which macrophages exhibit attenuated phagocytic capability in EMS remains undetermined. Herein, we found that heme, the byproduct of lysed erythrocytes, accumulated abnormally in the peritoneal fluid (PF) of patients with EMS (14.22 μmol/L, 95% confidence interval (CI): 12.54–16.71), compared with the EMS-free group (9.517 μmol/L, 95% CI: 8.891–10.1053). This abnormal accumulation was not associated with the color of PF, phase of the menstrual cycle or severity of the disease. The reduced phagocytic ability of peritoneal macrophages (pMφs) was observed in the EMS group. Consistently, a high-concentration (30 μmol/L) heme treatment impaired EMS-pMφs phagocytosis more than a low-concentration (10 μmol/L) heme treatment. A similar phenomenon was observed in the EMS-free control pMφs (Ctrl-pMφs) and the CD14+ peripheral monocytes (CD14+ Mos). These results indicated that a high heme concentration exhibits a negative effect on macrophage phagocytosis, which supplements the mechanism of impaired scavenger function of pMφs in EMS.

Restricted access

Jia-Wei Shi, Hui-Li Yang, Zhen-Zhen Lai, Hui-Hui Shen, Xue-Yun Qin, Xue-Min Qiu, Yan Wang, Jiang-Nan Wu, and Ming-Qing Li

The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of decidual stromal cells (DSCs), a series of cytokines and immune cells. Insulin-like growth factor 1 (IGF1) is a low molecular weight peptide hormone with similar metabolic activity and structural characteristics of proinsulin, which exerts its biological effects by binding with its receptor. Emerging evidence has shown that IGF1 is expressed at the maternal–fetal interface, but its special role in establishment and maintenance of pregnancy is largely unknown. Here, we found that the expression of IGF1 in the decidua was significantly higher than that in the endometrium. Additionally, decidua from women with normal pregnancy had high levels of IGF1 compared with that from women with unexplained recurrent spontaneous miscarriage. Estrogen and progesterone led to the increase of IGF1 in DSCs through upregulating the expression of WISP2. Recombinant IGF1 or DSCs-derived IGF1 increased the survival, reduced the apoptosis of DSCs, and downregulated the cytotoxicity of decidual NK cells (dNK) through interaction with IGF1R. These data suggest that estrogen and progesterone stimulate the growth of DSCs and impair the cytotoxicity of dNK possibly by the WISP2/IGF1 signaling pathway.

Free access

Rui Chen, Jian Du, Lin Ma, Li-qing Wang, Sheng-song Xie, Chang-ming Yang, Xian-yong Lan, Chuan-ying Pan, and Wu-zi Dong

MicroRNAs (miRNAs) are 18–24 nucleotides non-coding RNAs that regulate gene expression by post-transcriptional suppression of mRNA. The Chinese giant salamander (CGS, Andrias davidianus), which is an endangered species, has become one of the important models of animal evolution; however, no miRNA studies on this species have been conducted. In this study, two small RNA libraries of CGS ovary and testis were constructed using deep sequencing technology. A bioinformatics pipeline was developed to distinguish miRNA sequences from other classes of small RNAs represented in the sequencing data. We found that many miRNAs and other small RNAs such as piRNA and tsRNA were abundant in CGS tissue. A total of 757 and 756 unique miRNAs were annotated as miRNA candidates in the ovary and testis respectively. We identified 145 miRNAs in CGS ovary and 155 miRNAs in CGS testis that were homologous to those in Xenopus laevis ovary and testis respectively. Forty-five miRNAs were more highly expressed in ovary than in testis and 21 miRNAs were more highly expressed in testis than in ovary. The expression profiles of the selected miRNAs (miR-451, miR-10c, miR-101, miR-202, miR-7a and miR-499) had their own different roles in other eight tissues and different development stages of testis and ovary, suggesting that these miRNAs play vital regulatory roles in sexual differentiation, gametogenesis and development in CGS. To our knowledge, this is the first study to reveal miRNA profiles that are related to male and female CGS gonads and provide insights into sex differences in miRNA expression in CGS.