Generation of male germ cells from pluripotent cells could provide male gametes for treating male infertility and offer an ideal model for unveiling molecular mechanisms of spermatogenesis. However, the influence and exact molecular mechanisms, especially downstream effectors of BMP4 signaling pathways, in male germ cell differentiation of the induce pluripotent stem (iPS) cells, remain unknown. This study was designed to explore the role and mechanism of BMP4 signaling in the differentiation of mouse iPS cells to male germ cells. Embryoid body (EB) formation and recombinant BMP4 or Noggin were utilized to evaluate the effect of BMP4 on male germ cell generation from mouse iPS cells. Germ cell-specific genes and proteins as well as the downstream effectors of BMP4 signaling pathway were assessed using real-time PCR and Western blots. We found that BMP4 ligand and its multiple receptors, including BMPR1a, BMPR1b and BMPR2, were expressed in mouse iPS cells. Real-time PCR and Western blots revealed that BMP4 could upregulate the levels of genes and proteins for germ cell markers in iPS cells-derived EBs, whereas Noggin decreased their expression in these cells. Moreover, Smad1/5 phosphorylation, Gata4 transcription and the transcripts of Id1 and Id2 were enhanced by BMP4 but decreased when exposed to Noggin. Collectively, these results suggest that BMP4 promotes the generation of male germ cells from iPS cells via Smad1/5 pathway and the activation of Gata4, Id1 and Id2. This study thus offers novel insights into molecular mechanisms underlying male germ cell development.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Minghui Niu x
- Refine by Access: All content x
Shi Yang, Qingqing Yuan, Minghui Niu, Jingmei Hou, Zijue Zhu, Min Sun, Zheng Li, and Zuping He
Hong Wang, Liping Wen, Qingqing Yuan, Min Sun, Minghui Niu, and Zuping He
Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferate in vitro and the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant of p53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine.
Chencheng Yao, Yun Liu, Min Sun, Minghui Niu, Qingqing Yuan, Yanan Hai, Ying Guo, Zheng Chen, Jingmei Hou, Yang Liu, and Zuping He
Spermatogenesis is composed of three distinctive phases, which include self-renewal of spermatogonia via mitosis, spermatocytes undergoing meiosis I/II and post-meiotic development of haploid spermatids via spermiogenesis. Spermatogenesis also involves condensation of chromatin in the spermatid head before transformation of spermatids to spermatozoa. Epigenetic regulation refers to changes of heritably cellular and physiological traits not caused by modifications in the DNA sequences of the chromatin such as mutations. Major advances have been made in the epigenetic regulation of spermatogenesis. In this review, we address the roles and mechanisms of epigenetic regulators, with a focus on the role of microRNAs and DNA methylation during mitosis, meiosis and spermiogenesis. We also highlight issues that deserve attention for further investigation on the epigenetic regulation of spermatogenesis. More importantly, a thorough understanding of the epigenetic regulation in spermatogenesis will provide insightful information into the etiology of some unexplained infertility, offering new approaches for the treatment of male infertility.