Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Minzhi Gao x
  • Refine by access: All content x
Clear All Modify Search
Lihua Yao Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China

Search for other papers by Lihua Yao in
Google Scholar
PubMed
Close
,
Mingyang Li Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China

Search for other papers by Mingyang Li in
Google Scholar
PubMed
Close
,
Jingwen Hu Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China

Search for other papers by Jingwen Hu in
Google Scholar
PubMed
Close
,
Wangsheng Wang Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China

Search for other papers by Wangsheng Wang in
Google Scholar
PubMed
Close
, and
Minzhi Gao Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China

Search for other papers by Minzhi Gao in
Google Scholar
PubMed
Close

Polycystic ovary syndrome (PCOS) is a major cause of infertility in women of reproductive age. However, its exact etiology remains unknown. In this study, we sequenced miRNAs in human follicular fluid and identified 16 downregulated and 3 upregulated miRNAs in PCOS group compared with non-PCOS group. Among the differential expressed miRNAs, miR-335-5p was verified lower abundance in PCOS than non-PCOS group using quantitative real-time PCR. Besides, miR-335-5p negatively correlated with antral follicle count, anti-Müllerian hormone and total testosterone. Bioinformatics analysis identified serum/glucocorticoid-regulated kinase family member 3 (SGK3) as a potential target gene of miR-335-5p. SGK3 is involved in protein kinase B-mammalian target of rapamycin kinase (AKT-mTOR) signaling pathway and cell proliferation. Western blotting and cell counting kit-8 assays demonstrated that miR-335-5p mimic reduced, while miR-335-5p inhibitor increased, SGK3 abundance, AKT-mTOR pathway and cell proliferation in human granulosa-like tumor KGN cells. Dual-luciferase reporter assays showed that miR-335-5p binds to the 3′ untranslated region of SGK3 mRNA. Furthermore, miR-335-5p was decreased and SGK3 was elevated in human granulosa cells obtained from PCOS patients as compared with non-PCOS controls. These findings suggested that miR-335-5p is involved in granulosa cells proliferation by reducing SGK3 expression, which might provide a molecular target to improve dysfunctional granulosa cells in patients with PCOS.

Free access