Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Morgane Robles x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

Shavahn C Loux, Morgane Robles, Pascale Chavatte-Palmer, and Amanda M de Mestre

Development and the subsequent function of the fetal membranes of the equine placenta requires both complex and precise regulation of gene expression. Advancements in recent years in bioinformatic techniques have allowed more extensive analyses into gene expression than ever before. This review starts by combining publically available transcriptomic datasets obtained from a range of embryonic, placental and maternal tissues, with previous knowledge of equine placental development and physiology, to gain insights into key gene families relevant to placentation in the horse. Covering the whole of pregnancy, the review covers trophectoderm, yolk sac, chorionic girdle cells, allantoamnion, allantochorion. In particular, 182 predicted ‘early high impact’ genes were identified (>100 TPM and >100 fold-change) that distinguish between progenitor trophectoderm, chorionic girdle tissue and allantochorion. Furthermore, 77 genes were identified as enriched in placental tissues (placental TPM > 10, with minimal expression in 12 non-placental < 1 TPM), including excellent candidates for functional studies such as IGF1, apolipoproteins, VGLL1, GCM1, CDX2 and FABP4. One gene with a currently unknown function was only identified (miR-675) in chorionic girdle but no other placental or adult tissues. It is pertinent that future studies focus on single cell transcriptomic approaches in order to determine how these changes in gene expression relate to tissue composition and start to better define trophoblast subpopulations in the equine placenta. Future functional characterisation of these genes and pathways will also be key not only to understanding normal placental development and fetal health but also their potential role in pathologies of pregnancy.

Restricted access

Morgane Robles, Shavahn C Loux, Amanda M de Mestre, and Pascale Chavatte-Palmer

Equine placental development is a long process with unique features. Implantation occurs around 40 days of gestation (dpo) with the presence of a transient invasive placenta from 25-35dpo to 100-120dpo. The definitive non-invasive placenta remains until term (330d). This definitive placenta is diffuse and epitheliochorial, exchanging nutrients, gas and waste with the endometrium through microvilli, called microcotyledons. These are lined by an external layer of haemotrophic trophoblast. Moreover, histotrophic exchange remains active through the histotrophic trophoblast located along the areolae. Placental development is dependent on the maternal environment that can be affected by several factors (e.g., nutrition, metabolism, age, embryo technologies, pathologies) that may affect foetal development as well as long-term offspring health. The first section of the review focuses on normal placental development as well as definitive placental structure. Differences between the various areas of the placenta are also highlighted. The latter sections provide an overview of the effects of the maternal environment and reproductive pathologies, respectively, on trophoblast/placental gene expression and structure. So far, only pre-implantation and late gestation/term data are available, which demonstrate an important placental plasticity in response to environmental variation, with genes involved in oxidative stress and tissue differentiation mostly involved in the pre-implantation period, whereas genes involved in foeto-placental growth and nutrient transfers are mostly perturbed at term.