Search Results

You are looking at 1 - 3 of 3 items for

  • Author: PT Saunders x
Clear All Modify Search
Free access

PT Saunders

Steroid action is mediated by specific intracellular receptors, which are shifted to a transcriptionally active state after ligand binding. In 1996, the cloning of a new member of the nuclear receptor superfamily from the rat prostate was reported. Ligand-binding experiments have shown that this receptor binds specifically to oestrogens and it has been named oestrogen receptor beta (ER beta) to distinguish it from the oestrogen receptor (ER alpha) cloned from uterus in 1986. The alpha and beta forms of the oestrogen receptor have identical numbers of exons, and the cDNAs cloned from humans, rats and mice all share significant sequence homologies especially within their DNA and ligand-binding domains. Splice variants of ER beta have been identified. ER beta mRNA and protein have been detected in a wide range of tissues including the vasculature, bone, brain, heart and the gonads and genital tracts in both males and females, and in some, but not all, tissues the pattern of expression is distinct from that of ER alpha. Studies in vitro have demonstrated that ER alpha and ER beta can exist as hetero- or homodimers and that these forms may interact differentially with response elements on genes. The identification of ER beta has made us rethink the potential sites of action of both endogenous oestrogens and exogenous natural and synthetic oestrogens and anti-oestrogens and is currently the subject of intensive research efforts.

Free access

PT Saunders, JM Turner, M Ruggiu, M Taggart, PS Burgoyne, D Elliott and HJ Cooke

The autosomal gene DAZL is a member of a family of genes (DAZL, DAZ, BOULE), all of which contain a consensus RNA binding domain and are expressed in germ cells. Adult male and female mice null for Dazl lack gametes. In order to define more precisely the developmental stages in germ cells that require Dazl expression, the patterns of germ cell loss in immature male and female wild-type (+/+, WT) and Dazl -/- (DazlKO) mice were analysed. In females, loss of germ cells occurred during fetal life and was coincident with progression of cells through meiotic prophase. In males, testes were recovered from WT and DazlKO males obtained before and during the first wave of spermatogenesis (days 2-19). Mitotically active germ cells were present up to and including day 19. Functional differentiation of spermatogonia associated with detection of c-kit positive cells did not depend upon expression of Dazl. RBMY-positive cells (A, intermediate, B spermatogonia, zygotene and preleptotene spermatocytes) were reduced in DazlKO compared with WT testes. Staining of cell squashes from day 19 testes with anti-gamma-H2AX and anti-SCP3 antibodies showed that germ cells from DazlKO males were unable to progress beyond the leptotene stage of meiotic prophase I. It was concluded that in the absence of Dazl, germ cells can complete mitosis, and embark on functional differentiation but that, in both sexes, progression through meiotic prophase requires this RNA binding protein.

Free access

C McKinnell, PT Saunders, HM Fraser, CJ Kelnar, C Kivlin, KD Morris and RM Sharpe

The aims of this study were: (i) to investigate the cellular immunoexpression of androgen receptor and oestrogen receptor beta in the testes of the common marmoset (Callithrix jacchus) during neonatal life compared with their expression at later ages; (ii) to establish whether neonatal marmoset Sertoli cells are targets for androgens or oestrogens or both; and (iii) to investigate the relationship between neonatal plasma testosterone concentrations and androgen receptor immunoexpression by abolishing the neonatal testosterone surge with a potent GnRH antagonist. Androgen receptor and oestrogen receptor beta immunoexpression were evaluated in neonatal animals aged 1-4 days, 4 weeks and 6 weeks, and compared with immunoexpression in animals aged 18-22 weeks (early infancy), 35 weeks (late infancy), 58-62 weeks (late pubertal) and > 100 weeks (adult). Immunoexpression of androgen receptor in the reproductive tract was also evaluated at each age. Sertoli cell immunoexpression of androgen receptor was weak or absent in neonatal animals, but increased substantially in infant animals, reaching adult levels by the end of infancy. In contrast, immunoexpression of androgen receptor during the neonatal period was strong in testicular interstitial cells and very strong in epithelial cell nuclei throughout the reproductive tract, and did not change greatly with age in these cells or tissues. Similarly, immunoexpression of oestrogen receptor beta was prominent in many Sertoli cells and in the germ cells of neonatal animals, and was relatively constant throughout life. Weak immunoexpression of androgen receptor in neonatal Sertoli cells was associated with high plasma testosterone concentrations (2.7-5.5 ng ml(-1)), whereas strong Sertoli cell immunoexpression was associated with baseline (approximately 0.12 ng ml(-1)) testosterone concentrations in infant animals and with > 10 ng ml(-1) in late pubertal and adult animals. Immunoexpression of androgen receptor and oestrogen receptor beta was also evaluated in co-twin males aged 4 and 35 weeks, after treatment from birth to 4 weeks or from week 25 to week 35, respectively, with either vehicle or with GnRH antagonist at a dose known to suppress the neonatal testosterone surge completely. Only GnRH antagonist treatment during weeks 25-35 reduced androgen receptor immunoexpression, whereas immunoexpression of oestrogen receptor beta was unaffected by treatment during either period. On the basis of these findings it is suggested that: (i) neonatal marmoset Sertoli cells may be targets primarily for oestrogens rather than androgens; (ii) androgen receptor expression in the testes of neonatal and infant marmosets is not regulated in a straightforward way by testosterone; and (iii) high neonatal concentrations of plasma testosterone are not absolutely necessary for expression of androgen receptor in marmoset testes at this time.