Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Pat Lonergan x
Clear All Modify Search
Restricted access

Constantine A Simintiras, José M Sánchez, Michael McDonald and Pat Lonergan

Successful bovine pregnancy establishment hinges on conceptus elongation, a key reproductive phenomenon coinciding with the period during which most pregnancies fail. Elongation is yet to be recapitulated in vitro, whereas in vivo it is directly driven by uterine secretions and indirectly influenced by prior circulating progesterone levels. To better understand the microenvironment evolved to facilitate this fundamental developmental event, uterine fluid was recovered on Days 12–14 of the oestrous cycle – the window of conceptus elongation initiation – from cycling heifers supplemented, or not, with progesterone. Subsequent lipidomic profiling of uterine luminal fluid by advanced high-throughput metabolomics revealed the consistent presence of 75 metabolites, of which 47% were intricately linked to membrane biogenesis, and with seven displaying a day by progesterone interaction (P ≤ 0.05). Four metabolic pathways were correspondingly enriched according to day and P4 – i.e. comprised metabolites whose concentrations differed between groups (normal vs high P4) at different times (Days 12 vs 13 vs 14). These were inositol, phospholipid, glycerolipid and primary bile acid metabolism. Moreover, P4 elevated total uterine luminal fluid lipid content on Day 14 (P < 0.0001) relative to all other comparisons. The data combined suggest that maternal lipid supply during the elongation-initiation window is primarily geared towards conceptus membrane biogenesis. In summary, progesterone supplementation alters the lipidomic profile of bovine uterine fluid during the period of conceptus elongation initiation.

Free access

Serafín Pérez-Cerezales, Priscila Ramos-Ibeas, Dimitrios Rizos, Pat Lonergan, Pablo Bermejo-Alvarez and Alfonso Gutiérrez-Adán

Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.

Free access

Niamh Forde, Paul A McGettigan, Jai P Mehta, Lydia O'Hara, Solomon Mamo, Fuller W Bazer, Thomas E Spencer and Pat Lonergan

The aims of this study were i) to characterize the global changes in the composition of the uterine luminal fluid (ULF) from pregnant heifers during pregnancy recognition (day 16) using nano-LC MS/MS; ii) to describe quantitative changes in selected proteins in the ULF from days 10, 13, 16 and 19 by Isobaric tags for Relative and Absolute Quantification (iTRAQ) analysis; and iii) to determine whether these proteins are of endometrial or conceptus origin, by examining the expression profiles of the associated transcripts by RNA sequencing. On day 16, 1652 peptides were identified in the ULF by nano-LC MS/MS. Of the most abundant proteins present, iTRAQ analysis revealed that RPB4, TIMP2 and GC had the same expression pattern as IFNT, while the abundance of IDH1, CST6 and GDI2 decreased on either day 16 or 19. ALDOA, CO3, GSN, HSP90A1, SERPINA31 and VCN proteins decreased on day 13 compared with day 10 but subsequently increased on day 16 (P<0.05). Purine nucleoside phosphorylase (PNP) and HSPA8 decreased on day 13, increased on day 16 and decreased and increased on day 19 (P<0.05). The abundance of CATD, CO3, CST6, GDA, GELS, IDHC, PNPH and TIMP2 mRNAs was greater (P<0.001) in the endometrium than in the conceptus. By contrast, the abundance of ACTB, ALDOA, ALDR, CAP1, CATB, CATG, GD1B, HSP7C, HSP90A, RET4 and TERA was greater (P<0.05) in the conceptus than in the endometrium. In conclusion, significant changes in the protein content of the ULF occur during the pre-implantation period of pregnancy reflecting the morphological changes that occur in the conceptus.