Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Peter Smith x
Clear All Modify Search
Full access

Xiaoqian Wang, Sally Catt, Mulyoto Pangestu and Peter Temple-Smith

Ovarian tissue cryopreservation and transplantation can be used to preserve fertility for cancer patients. In this study, we assessed the viability and function of ovarian tissue from adult mice that was cryopreserved by solid surface vitrification or traditional slow-cooling using various in vitro and in vivo techniques, including allotransplantation, in vitro oocyte maturation, embryo culture in vitro, blastocyst cryopreservation, embryo transfer, and development. The importance of cumulus cells for oocyte maturation, fertilization, and embryo development was investigated. Graft recovery, follicle survival, and oocyte retrieval was similar in control, vitrified, and slow-cooled groups. High rates of oocyte maturation, cleavage, and blastocyst formation were achieved, with no significant differences between the control, vitrified or slow-cooled ovarian tissue grafts. The presence of cumulus cells was important for oocyte maturation, fertilization, and subsequent development. Cumulus–oocyte complexes with no surrounding cumulus cells (N-COCs) or with an incomplete layer (P-COCs) had significantly lower rates of oocyte maturation and blastocyst formation than cumulus–oocyte complexes with at least one complete layer of cumulus cells (F-COCs; maturation rate: 63, 78 vs 94%; blastocyst rate: 29, 49 vs 80%). Live births were achieved using vitrified blastocysts derived from oocytes taken from vitrified and slow-cooled ovarian tissue heterotypic allografts. Successful production of healthy offspring from these vitrified blastocysts suggests that this technique should be considered as a useful stage to pause in the assisted reproduction pathway. This provides an alternative protocol for restoring fertility and offering cancer patients a better indication of their chances of pregnancy and live birth.

Full access

Xiaoqian Wang, Sally Catt, Mulyoto Pangestu and Peter Temple-Smith

Cryopreservation of ovarian tissue is an important option for preserving the fertility of cancer patients undergoing chemotherapy and radiotherapy. In this study, we examined the viability and function of oocytes derived in vitro from pre-antral follicles as an alternative method for restoring fertility. Pre-antral follicles (specified as secondary follicle with a diameter around 100–130 μm) were mechanically isolated from vitrified-warmed and fresh adult mouse ovarian tissues and cultured for 12 days followed by an ovulation induction protocol at the end of this period to initiate oocyte maturation. Oocytes were then released from these follicles, fertilized in vitro, and cultured to the blastocyst stage and vitrified. After storage in liquid nitrogen for 2 weeks, groups of vitrified blastocysts were warmed and transferred into pseudo-pregnant recipient females. Although most of the isolated mouse pre-antral follicles from fresh (79.4%) and vitrified (75.0%) ovarian tissues survived the 12-day in vitro culture period, significantly fewer mature oocytes developed from vitrified-warmed pre-antral follicles than from the fresh controls (62.2 vs 86.4%, P<0.05). No difference was observed in embryo cleavage rates between these two groups, but the proportion of embryos that developed into blastocysts in the vitrification group was only half that of the controls (24.2 vs 47.2%, P<0.05). Nevertheless, live births of healthy normal pups were achieved after transfer of vitrified blastocysts derived from both experimental groups. This study shows that successful production of healthy offspring using an in vitro follicle culture system is feasible, and suggests that this procedure could be used in cancer patients who wish to preserve their fertility using ovarian tissue cryopreservation.

Full access

Eran Altman, Pamela Yango, Radwa Moustafa, James F Smith, Peter C Klatsky and Nam D Tran

Autologous spermatogonial stem cell (SSC) transplantation is a potential therapeutic modality for patients with azoospermia following cancer treatment. For this promise to be realized, definitive membrane markers of prepubertal and adult human SSCs must be characterized in order to permit SSC isolation and subsequent expansion. This study further characterizes the markers of male gonocytes, prespermatogonia, and SSCs in humans. Human fetal, prepubertal, and adult testicular tissues were analyzed by confocal microscopy, fluorescence-activated cell sorting, and qRT-PCR for the expression of unique germ cell membrane markers. During male fetal development, THY1 and KIT (C-Kit) are transient markers of gonocytes but not in prespermatogonia and post-natal SSCs. Although KIT expression is detected in gonocytes, THY1 expression is also detected in the somatic component of the fetal testes in addition to gonocytes. In the third trimester of gestation, THY1 expression shifts exclusively to the somatic cells of the testes where it continues to be detected only in the somatic cells postnatally. In contrast, SSEA4 expression was only detected in the gonocytes, prespermatogonia, SSCs, and Sertoli cells of the fetal and prepubertal testes. After puberty, SSEA4 expression can only be detected in primitive spermatogonia. Thus, although THY1 and KIT are transient markers of gonocytes, SSEA4 is the only common membrane marker of gonocytes, prespermatogonia, and SSCs from fetal through adult human development. This finding is essential for the isolation of prepubertal and adult SSCs, which may someday permit fertility preservation and reversal of azoospermia following cancer treatment.

Full access

C Joy McIntosh, Steve Lawrence, Peter Smith, Jennifer L Juengel and Kenneth P McNatty

The transforming growth factor β (TGFB) superfamily proteins bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9), are essential for mammalian fertility. Recent in vitro evidence suggests that the proregions of mouse BMP15 and GDF9 interact with their mature proteins after secretion. In this study, we have actively immunized mice against these proregions to test the potential in vivo roles on fertility. Mice were immunized with either N- or C-terminus proregion peptides of BMP15 or GDF9, or a full-length GDF9 proregion protein, each conjugated to keyhole limpet hemocyanin (KLH). For each immunization group, ovaries were collected from ten mice for histology after immunization, while a further 20 mice were allowed to breed and litter sizes were counted. To link the ovulation and fertility data of these two experimental end points, mice were joined during the time period identified by histology as being the ovulatory period resulting in to the corpora lutea (CL) counted. Antibody titers in sera increased throughout the study period, with no cross-reactivity observed between BMP15 and GDF9 sera and antigens. Compared with KLH controls, mice immunized with the N-terminus BMP15 proregion peptide had ovaries with fewer CL (P<0.05) and produced smaller litters (P<0.05). In contrast, mice immunized with the full-length GDF9 proregion not only had more CL (P<0.01) but also had significantly smaller litter sizes (P<0.01). None of the treatments affected the number of antral follicles per ovary. These findings are consistent with the hypothesis that the proregions of BMP15 and GDF9, after secretion by the oocyte, have physiologically important roles in regulating ovulation rate and litter size in mice.

Full access

Nadine M Richings, Geoffrey Shaw, Peter D Temple-Smith and Marilyn B Renfree

Here we report the first use of intra-cytoplasmic sperm injection (ICSI) in a marsupial, the tammar wallaby (Macropus eugenii ), to achieve in vitro fertilization and cleavage. A single epididymal spermatozoon was injected into the cytoplasm of each mature oocyte collected from Graafian follicles or from the oviduct within hours of ovulation. The day after sperm injection, oocytes were assessed for the presence of pronuclei and polar body extrusion and in vitro development was monitored for up to 4 days. After ICSI, three of four (75%) follicular and four of eight (50%) tubal oocytes underwent cleavage. The cleavage pattern was similar to that previously reported for in vivo fertilized oocytes placed in culture, where development also halted at the 4- to 8-cell stage. One-third of injected oocytes completed the second cleavage division, but only a single embryo reached the 8-cell stage. The success of ICSI in the tammar wallaby provided an opportunity to examine the influence of the mucoid coat that is deposited around oocytes passing through the oviduct after fertilization. The presence of a mucoid coat in tubal oocytes did not prevent fertilization by ICSI and the oocytes cleaved in vitro to a similar stage as follicular oocytes lacking a mucoid coat. Cell–zona and cell–cell adhesion occurred in embryos from follicular oocytes, suggesting that the mucoid coat is not essential for these processes. However, blastomeres were more closely apposed in embryos from tubal oocytes and cell–cell adhesion was more pronounced, indicating that the mucoid coat may be involved in maintaining the integrity of the conceptus during cleavage.

Full access

Craig Smith, Debbie Berg, Sue Beaumont, Neil T Standley, David N Wells and Peter L Pfeffer

During somatic cell nuclear transfer (NT), the transcriptional status of the donor cell has to be reprogrammed to reflect that of an embryo. We analysed the accuracy of this process by comparing transcript levels of four developmentally important genes (Oct4, Otx2, Ifitm3, GATA6), a gene involved in epigenetic regulation (Dnmt3a) and three housekeeping genes (β-actin, β-tubulin and GAPDH) in 21 NT blastocysts with that in genetically half-identical in vitro produced (IVP, n=19) and in vivo (n=15) bovine embryos. We have optimised an RNA-isolation and SYBR-green-based real-time RT-PCR procedure allowing the reproducible absolute quantification of multiple genes from a single blastocyst. Our data indicated that transcript levels did not differ significantly between stage and grade-matched zona-free NT and IVP embryos except for Ifitm3/Fragilis, which was expressed at twofold higher levels in NT blastocysts. Ifitm3 expression is confined to the inner cell mass at day 7 blastocysts and to the epiblast in day 14 embryos. No ectopic expression in the trophectoderm was seen in NT embryos. Gene expression in NTand IVP embryos increased between two- and threefold for all eight genes from early to late blastocyst stages. This increase exceeded the increase in cell number over this time period indicating an increase in transcript number per cell. Embryo quality (morphological grading) was correlated to cell number for NT and IVP embryos with grade 3 blastocysts containing 30% fewer cells. However, only NT embryos displayed a significant reduction in gene expression (50%) with loss of quality. Variability in gene expression levels was not significantly different in NT, IVP or in vivo embryos but differed among genes, suggesting that the stringency of regulation is intrinsic to a gene and not affected by culture or nuclear transfer. Oct4 levels exhibited the lowest variability. Analysing the total variability of all eight genes for individual embryos revealed that in vivo embryos resembled each other much more than did NT and IVP blastocysts. Furthermore, in vivo embryos, consisting of 1.5-fold more cells, generally contained two- to fourfold more transcripts for the eight genes than did their cultured counterparts. Thus, culture conditions (in vivo versus in vitro) have greater effects on gene expression than does nuclear transfer when minimising genetic heterogeneity.

Full access

Peter Smith, Jennifer L Juengel, Paul Maclean, Christy Rand and Jo-Ann Stanton

A number of studies have demonstrated effects of gestational undernutrition on fetal ovarian development and postnatal female fertility. However the mechanism underlying these effects remains elusive. Using a cohort of animals in which altered gestational nutrition affected indicators of postnatal fertility, this study applies RNAseq to fetal ovaries to identify affected genes and pathways that may underlie the relationship between gestational plane of nutrition and postnatal fertility. Pregnant ewes were exposed to either a maintenance diet or 0.6 of maintenance for the first 55 days of gestation followed by an ad libitum diet. Complementary DNA libraries were constructed from 5-6 fetal ovaries from each nutritional group at both days 55 and 75 of gestation and sequenced using Ion Proton. Of approximately 16,000 transcripts, 69 genes were differentially expressed at day 55 and 145 genes differentially expressed at day 75. At both gestational ages, genes expressed preferentially in germ cells were common amongst the differentially expressed genes. Enriched gene ontology terms included ion transport, nucleic acid binding, protease inhibitor activity and carrier proteins of the albumin family. Affected pathways identified by IPA analysis included LXR/RXR activation, FXR/RXR activation, pathways associated with nitric oxide production and citrullination (by NOS1), vitamin C transport and metabolism, and REDOX reactions. The data offers some insights into potential mechanisms underlying the relationship between gestational plane of nutrition and postnatal fertility observed in these animals. In particular the roles of nitric oxide and protease inhibitors in germ cell development are highlighted and warrant further study.

Full access

Jennifer L Juengel, Michelle C French, Laurel D Quirke, Alexia Kauff, George W Smith and Peter D Johnstone

We hypothesised that cocaine- and amphetamine-regulated transcript (CARTPT) would be differentially expressed in ewes with differing ovulation rates. Expression of mRNA for CARTPT, as well as LHCGR, FSHR, CYP19A1 and CYP17A1 was determined in antral follicles ≥1 mm in diameter collected during the follicular phase in ewes heterozygous for the Booroola and Inverdale genes (I+B+; average ovulation rate 4) and ++ contemporaries (++; average ovulation rate 1.8). In ++ ewes (n = 6), CARTPT was expressed in small follicles (1 to <3 mm diameter), where 18.8 ± 2.5% follicles expressed CARTPT. CART peptide was also detected in follicular fluid of some follicles of ++ ewes. In I+B+ ewes, 5/6 ewes did not have any follicles that expressed CARTPT, and no CART peptide was detected in any follicle examined. Expression pattern of CYP19A1 differed between I+B+ and ++ ewes with an increased percentage of small and medium follicles (3 to <4.5 mm diameter) but decreased percentage of large follicles (≥4.5 mm diameter) expressing CYP19A1 in the I+B+ ewes. Many of the large follicles from the I+B+ ewes appeared non-functional and expression of LHCGR, FSHR, CYP17A1 and CYP19A1 was less than that observed in ++ ewes. Expression of FSHR and CYP17A1 was not different between groups in small and medium follicles, but LHCGR expression was approximately double in I+B+ ewes compared to that in ++ ewes. Thus, ewes with high ovulation rates had a distinct pattern of expression of CARTPT mRNA and protein compared to ewes with normal ovulation rates, providing evidence for CART being important in the regulation of ovulation rate.

Full access

Emily F Hynes, Carl D Rudd, Peter D Temple-Smith, George Sofronidis, Damien Paris, Geoff Shaw and Marilyn B Renfree

The tammar wallaby (Macropus eugenii) is a small, promiscuous, macropodid marsupial. Females usually produce a single young each year and there is a clear dominance hierarchy between adult males. The dominant male usually mates first and then guards the female to prevent access to her by other males. In this study, agonistic encounters and mating behaviour were observed to determine male dominance hierarchies in six groups of captive tammars consisting of a total of 23 males and 50 females. Mating behaviour was observed immediately post-partum when females were in oestrus and was correlated with plasma testosterone concentrations. Male mating sequences were recorded, and the paternity of offspring was determined by using seven macropodid marsupial microsatellites. Rates of sexual checking and aggression by males housed with females in oestrus in the non-breeding season were lower than in the breeding season. These males also had lower concentrations of testosterone, but were still able to sire young. High testosterone concentrations neither ensured dominance nor appeared to control directly the level of sexual activity. Females usually mated with more than one male. The dominant male most often secured the initial copulation (60%), but the first-mating male did not always secure parentage, with second and third matings resulting in as many young as first matings. Using these data, we were unable to discount first sire, last sire or equal chance models of paternity in this species. Half the young (50%) were sired by the dominant α male, but of the remaining progeny, the β male sired more (35%) than γ and δ males (15%). Dominance therefore is only a moderately effective predictor of paternity in the tammar. Although the dominant males gained most first matings and individually sired half of the offspring, the subdominant males still contributed significantly to the population, at least in captivity.

Full access

Jennifer L Juengel, Norma L Hudson, Martin Berg, Keith Hamel, Peter Smith, Stephen B Lawrence, Lynda Whiting and Kenneth P McNatty

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are essential for ovarian follicular growth in sheep, whereas only GDF9 is essential in mice suggesting that the roles of these oocyte-derived growth factors differ among species. At present, however, there is only limited information on the action of BMP15 and GDF9 in other species. Thus, the aim of this experiment was to determine the effect of neutralizing GDF9 and/or BMP15 in vivo on ovarian follicular development and ovulation rate in cattle through active immunization using the mature regions of the proteins or peptides from the N-terminal area of mature regions. Immunization with the BMP15 peptide, with or without GDF9 peptide, significantly altered (increased or decreased) ovulation rate. In some animals, there were no functional corpora lutea (CL), whereas in others up to four CL were observed. From morphometric examination of the ovaries, immunization with GDF9 and/or BMP15 reduced the level of ovarian follicular development as assessed by a reduced proportion of the ovarian section occupied by antral follicles. In addition, immunization against GDF9 and/or BMP15 peptides reduced follicular size to <25% of that in the controls. In conclusion, immunization against GDF9 and BMP15, alone or together, altered follicular development and ovulation rate in cattle. Thus, as has been observed in sheep, both GDF9 and BMP15 appear to be key regulators of normal follicular development and ovulation rate in cattle.