Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Phil G Knight x
Clear All Modify Search
Full access

Phil G Knight and Claire Glister

In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-β (TGF-β ) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, BMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-β superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-β and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. In addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.

Full access

Claire Glister, Leanne Satchell and Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we compared ex vivo expression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin or FSHR mRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.

Full access

Warakorn Cheewasopit, Mhairi Laird, Claire Glister and Phil G Knight

Myostatin plays a negative role in skeletal muscle growth regulation but its potential role in the ovary has received little attention. Here, we first examined relative expression of myostatin (MSTN), myostatin receptors (ACVR1B, ACVR2B and TGFBR1) and binding protein, follistatin (FST), in granulosa (GC) and theca (TC) cells of developing bovine follicles. Secondly, using primary GC and TC cultures, we investigated whether myostatin affects steroidogenesis and cell number. Thirdly, effects of gonadotropins and other intrafollicular factors on MSTN expression in GC and TC were examined. MSTN, ACVR1B, TGFBR1, ACVR2B and FST mRNA was detected in both GC and TC at all follicle stages. Immunohistochemistry confirmed follicular expression of myostatin protein. Interestingly, MSTN mRNA expression was lowest in GC of large oestrogen-active follicles whilst GC FST expression was maximal at this stage. In GC, myostatin increased basal CYP19A1 expression and oestradiol secretion whilst decreasing basal and FSH-induced HSD3B1 expression and progesterone secretion and increasing cell number. Myostatin also reduced IGF-induced progesterone secretion. FSH and dihydrotestosterone had no effect on granulosal MSTN expression whilst insulin-like growth factor and tumour necrosis factor-alpha suppressed MSTN level. In TC, myostatin suppressed basal and LH-stimulated androgen secretion in a follistatin-reversible manner and increased cell number, without affecting progesterone secretion. LH reduced thecal MSTN expression whilst BMP6 had no effect. Collectively, results indicate that, in addition to being potentially responsive to muscle-derived myostatin from the circulation, myostatin may have an intraovarian autocrine/paracrine role to modulate thecal and granulosal steroidogenesis and cell proliferation/survival.

Full access

Claire Glister, Simon J Sunderland, Maurice P Boland, James J Ireland and Phil G Knight

Five isoforms of follistatin (FST) (Mr 31, 33, 35, 37, and 41 kDa) were purified from bovine follicular fluid (bFF). Comparison of their activin and heparan sulphate proteoglycan (HSP) binding properties and biopotencies in the neutralisation of activin A action in vitro revealed that all five isoforms bound activin A, but they did so with different affinities. Only the 31 kDa isoform (FST-288) bound to HSP. FST-288 also showed the greatest biopotency, and the 35 and 41 kDa isoforms were the least potent. To determine whether bovine follicle development is associated with changing intrafollicular FST and activin profiles, we analysed bFF from dominant follicles (DFs) and subordinate follicles (SF) collected at strategic times during a synchronised oestrous cycle. Total FST, activin A and activin AB were measured by immunoassay, whereas individual FST isoforms were quantified by immunoblotting. Follicle diameter was positively correlated with oestrogen:progesterone ratio (r=0.56) in bFF but negatively correlated with activin A (r=−0.34), activin AB (r=−0.80) and ‘total’ FST (r=−0.70) levels. Follicle diameter was positively correlated with the abundance of the 41 kDa isoform (r=0.59) but negatively correlated with the abundance of the 33 and 31 kDa isoforms (r=−0.56 and r=−0.41 respectively). Both follicle statuses (DF and SF) and cycle stage affected total FST, activin A and activin B levels, whereas follicle status, but not cycle stage, affected the abundance of the 41, 37, 33 and 31 kDa FST isoforms. Collectively, these findings indicate that intrafollicular FST isoforms, which differ in their ability to bind and neutralise activins and to associate with cell-surface proteoglycans, show divergent changes during follicle development. Enhanced FST production may play an important negative role, either directly or via the inhibition of the positive effects of activins, on follicle growth and function during follicular waves.

Full access

Moafaq Samir, Claire Glister, Dareen Mattar, Mhairi Laird and Phil G Knight

Pro-inflammatory cytokines secreted by macrophages and other cell types are implicated as intraovarian factors affecting different aspects of ovarian function including follicle and corpus luteum ‘turnover’, steroidogenesis and angiogenesis. Here, we compared granulosal (GC) and thecal (TC) expression of TNF, IL6 and their receptors (TNFRSF1A, TNFRSF1B and IL6R) during bovine antral follicle development; all five mRNA transcripts were detected in both GC and TC and statistically significant cell-type and follicle stage-related differences were evident. Since few studies have examined cytokine actions on TC steroidogenesis, we cultured TC under conditions that retain a non-luteinized ‘follicular’ phenotype and treated them with TNFα and IL6 under basal and LH-stimulated conditions. Both TNFα and IL6 suppressed androgen secretion concomitantly with CYP17A1 and LHCGR mRNA expression. In addition, TNFα reduced INSL3, HSD3B1 and NOS3 expression but increased NOS2 expression. IL6 also reduced LHCGR and STAR expression but did not affect HSD3B1, INSL3, NOS2 or NOS3 expression. As macrophages are a prominent source of these cytokines in vivo, we next co-cultured TC with macrophages and observed an abolition of LH-induced androgen production accompanied by a reduction in CYP17A1, INSL3, LHCGR, STAR, CYP11A1 and HSD3B1 expression. Exposure of TC to bacterial lipopolysaccharide also blocked LH-induced androgen secretion, an effect reduced by a toll-like receptor blocker (TAK242). Collectively, the results support an inhibitory action of macrophages on thecal androgen production, likely mediated by their secretion of pro-inflammatory cytokines that downregulate the expression of LHCGR, CYP17A1 and INSL3. Bovine theca interna cells can also detect and respond directly to lipopolysaccharide.

Full access

Rachel C Hirst, Margaret H Abel, Vivienne Wilkins, Christine Simpson, Phil G Knight, Fu-Ping Zhang, Ilpo Huhtaniemi, T Rajendra Kumar and Harry M Charlton

Measurement of inhibins A and B in the serum of normal cyclic rodents has implicated FSH in the regulation of these peptides within the ovary. To extend these observations we have used a panel of mutant mice carrying mutations which affect either the production of, or the ability to respond to, FSH and LH. As a consequence, the females are infertile and show different degrees of follicular development. The aim of this study was to measure inhibin gene transcription in the ovaries of these mutant females together with inhibin protein levels in ovaries and serum and to relate these to follicular development within the ovary. Comparison was made with a pool of normal/heterozygous females. In hpg females where lack of GnRH production results in the absence of gonadotropin synthesis, in FSHβ knockout (FSHβKO) females where disruption of the gene encoding FSHβ results in the absence of FSH production, and in FSH receptor knockout (FSHRKO) females which are unable to respond to circulating FSH, follicular development remains at the pre-antral stage in these three mutants. Only in the hpg females were common inhibin α subunit mRNA levels significantly lower than normal. In these three mutants, however, mRNA levels for both the βA and βB subunits were extremely low compared with normal mice. At the protein level, neither inhibin A nor B was detected in the serum of these three mutants; however inhibin B, albeit at very low levels, was detectable within the ovaries. These observations confirm a major role for FSH in the control of transcription of the βA and βB genes but suggest that the constitutive transcription of the alpha subunit is less dependent on FSH. In contrast, in LH receptor knockout (LuRKO) female mice inhibin βA subunit mRNA levels were similar to those measured in normal/heterozygous females but levels of inhibin α and βB subunit mRNAs were significantly higher than in the normal group. This was reflected in significantly higher inhibin B protein levels in ovaries and serum. An inability to respond to LH combined with high circulating levels of FSH leads to a high proportion of antral follicles in LuRKO females, with granulosa cells constituting the major cell type within the ovary. The high percentage of antral granulosa cells is likely to account for the significantly higher levels of inhibin B production in these ovaries.