Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Qian Huang x
Clear All Modify Search
Free access

Qian Zhang, Song Yu, Xing Huang, Yi Tan, Cheng Zhu, Yan-Ling Wang, Haibin Wang, Hai-Yan Lin, Jiejun Fu and Hongmei Wang

Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.

Restricted access

Shiyang Zhang, Yunhao Liu, Qian Huang, Shuo Yuan, Hong Liu, Lin Shi, Yi Tian Yap, Wei Li, Jingkai Zhen, Ling Zhang, Rex A Hess and Zhibing Zhang

Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. IFT172 is a component of the IFT complex. Global disruption of mouse Ift172 gene caused typical phenotypes of ciliopathy. Mouse Ift172 gene appears to translate two major proteins; the full-length protein is highly expressed in the tissues enriched in cilia and the smaller 130 kDa one is only abundant in the testis. In male germ cells, IFT172 is highly expressed in the manchette of elongating spermatids. A germ cell-specific Ift172 mutant mice were generated, and the mutant mice did not show gross abnormalities. There was no difference in testis/body weight between the control and mutant mice, but more than half of the adult homozygous mutant males were infertile and associated with abnormally developed germ cells in the spermiogenesis phase. The cauda epididymides in mutant mice contained less developed sperm that showed significantly reduced motility, and these sperm had multiple defects in ultrastructure and bent tails. In the mutant mice, testicular expression levels of some IFT components, including IFT20, IFT27, IFT74, IFT81 and IFT140, and a central apparatus protein SPAG16L were not changed. However, expression levels of ODF2, a component of the outer dense fiber, and AKAP4, a component of fibrous sheath, and two IFT components IFT25 and IFT57 were dramatically reduced. Our findings demonstrate that IFT172 is essential for normal male fertility and spermiogenesis in mice, probably by modulating specific IFT proteins and transporting/assembling unique accessory structural proteins into spermatozoa.

Restricted access

Yunhao Liu, Ling Zhang, Wei Li, Qian Huang, Shuo Yuan, Yuhong Li, Junpin Liu, Shiyang Zhang, Guanglun Pin, Shizhen Song, Pierre F Ray, Christophe Arnoult, Chunghee Cho, Balbina Garcia-Reyes, Uwe Knippschild, Jerome F Strauss III and Zhibing Zhang

Mammalian SPAG6, the orthologue of Chlamydomonas reinhardtii PF16, is a component of the central apparatus of the ‘9 + 2’ axoneme that controls ciliary/flagellar motility, including sperm motility. Recent studies revealed that SPAG6 has functions beyond its role in the central apparatus. Hence, we reexamined the role of SPAG6 in male fertility. In wild-type mice, SPAG6 was present in cytoplasmic vesicles in spermatocytes, the acrosome of round and elongating spermatids and the manchette of elongating spermatids. Spag6-deficient testes showed abnormal spermatogenesis, with abnormalities in male germ cell morphology consistent with the multi-compartment pattern of SPAG6 localization. The armadillo repeat domain of mouse SPAG6 was used as a bait in a yeast two-hybrid screen, and several proteins with diverse functions appeared multiple times, including Snapin, SPINK2 and COPS5. Snapin has a similar localization to SPAG6 in male germ cells, and SPINK2, a key protein in acrosome biogenesis, was dramatically reduced in Spag6-deficient mice which have defective acrosomes. SPAG16L, another SPAG6-binding partner, lost its localization to the manchette in Spag6-deficient mice. Our findings demonstrate that SPAG6 is a multi-functional protein that not only regulates sperm motility, but also plays roles in spermatogenesis in multiple cellular compartments involving multiple protein partners.