Search Results

You are looking at 1 - 10 of 10 items for

  • Author: R. Gonzalez x
Clear All Modify Search
Free access

R. Gonzalez, P. Poindron and J. P. Signoret

Summary. The response of sexually experienced Ile-de-France rams to the presentation of oestrous females in October at sunrise (Subgroup S) or at 11:00 h (Subgroup N) was studied and compared with unstimulated controls (Subgroup C). Animals (12 per group) were bled for 7 h at 20-min intervals, starting 3 h before stimulation by oestrous females (3 per group). Eight rams from Subgroup S showed an increase of LH pulse frequency and only 3 in Subgroup N (P < 0·03). In Subgroup S the introduction of females led to 2- and 3-fold increases in LH pulse frequency during the stimulation period compared with values in Subgroup C or before the stimulation period (3, 1·6 and 1 peaks/rams/6 h respectively; P < 0·05). The presence of females also led to an increase in mean testosterone concentrations, and small increases in basal and mean LH values. No differences were found in LH peak amplitudes. In Subgroup N only inconsistent evidence of increases in mean LH and testosterone values was found. No differences between Subgroups S and N in behavioural patterns during stimulation were detected. We conclude that the presence of females affects LH pulse frequency at sunrise but not at noon during the breeding season and this effect is at least partly independent of sexual behaviour. These results suggest a possible circadian variation in CNS sensitivity involving the hypothalamic regulation of LH secretion in response to the presence of oestrous females.

Keywords: temporal variations; LH; testosterone; ram; female effect; teasing

Free access

M. A. de las Heras, S. I. Gonzalez and R. S. Calandra

Summary. Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g−1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g−1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine.

Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.

Keywords: flutamide; putrescine; testosterone; spermidine; spermine; rat

Free access

R Baltiérrez-Hoyos, A L Roa-Espitia and E O Hernández-González

In the mammalian sperm, the acrosome reaction (AR) is considered to be a regulated secretion that is an essential requirement for physiological fertilization. The AR is the all-or-nothing secretion system that allows for multiple membrane fusion events. It is a Ca2 +-regulated exocytosis reaction that has also been shown to be regulated by several signaling pathways. CDC42 has a central role in the regulated exocytosis through the activation of SNARE proteins and actin polymerization. Furthermore, the lipid raft protein caveolin-1 (CAV1) functions as a scaffold and guanine nucleotide dissociation inhibitor protein for CDC42, which is inactivated when associated with CAV1. CDC42 and other RHO proteins have been shown to localize in the acrosome region of mammalian sperm; however, their relationship with the AR is unknown. Here, we present the first evidence that CDC42 and CAV1 could be involved in the regulation of capacitation and the AR. Our findings show that CDC42 is activated early during capacitation, reaching an activation maximum after 20 min of capacitation. Spontaneous and progesterone-induced ARs were inhibited when sperm were capacitated in presence of secramine A, a specific CDC42 inhibitor. CAV1 and CDC42 were co-immunoprecipitated from the membranes of noncapacitated sperm; this association was reduced in capacitated sperm, and our data suggest that the phosphorylation (Tyr14) of CAV1 by c-Src is involved in such reductions. We suggest that CDC42 activation is favored by the disruption of the CAV1–CDC42 interaction, allowing for its participation in the regulation of capacitation and the AR.

Free access

P Ramos-Ibeas, E Pericuesta, R Fernández-González, M A Ramírez and A Gutierrez-Adan

The role of the epididymis as a quality control organ in preventing infertile gametes entering the ejaculate has been extensively explored, and it has been suggested that a specific region of mammalian epididymis is able to phagocytose abnormal germ cells. This study examines whether the epithelium of certain zones of the mouse epididymis can act as a selection barrier by removing immature germ cells from the lumen by phagocytosis. To detect the presence of immature germ cells in the epididymis, we generated transgenic mice expressing enhanced green fluorescent protein under the deleted in azoospermia-like (mDazl) promoter to easily identify immature germ cells under fluorescence microscopy. Using this technique, we observed that during the first stage of spermatogenesis in prepuberal mice, a wave of immature germ cells is released into the epididymis and that the immature epididymis is not able to react to this abnormal situation. By contrast, when immature germ cells were artificially released into the epididymis in adult mice, a phagocytic response was observed. Phagosomes appeared inside principal cells of the epididymal epithelium and were observed to contain immature germ cells at different degradation stages in different zones of the epididymis, following the main wave of immature germ cells. In this paper, we describe how the epididymal epithelium controls sperm quality by clearing immature germ cells in response to their artificially induced massive shedding into the epididymal lumen. Our observations indicate that this phenomenon is not restricted to a given epididymis region and that phagocytic capacity is gradually acquired during epididymal development.

Free access

M Arias-Álvarez, R M García-García, L Torres-Rovira, A González-Bulnes, P G Rebollar and P L Lorenzo

Extreme body mass indexes may impair reproductive outcome in assisted reproductive technologies. Leptin reflects the amount of body fat and could act as a modulator of oocyte quality through activation of specific transcription factors. The aim of this work was to establish whether: 1) leptin influences meiotic and cytoplasmic oocyte maturation; 2) STAT3 and MAPK mediate the effects of leptin and 3) leptin modulates steroid secretion by cumulus–oocyte complexes (COC) during in vitro maturation (IVM). We confirmed immunolocalisation of leptin receptor in oocytes, cumulus/granulosa cells during the peri-ovulatory period. The confocal study showed that COC supplemented with 1, 10 and 100 ng/ml leptin had a significantly higher metaphase II (MII) percentage than those IVM without leptin (P<0.05) and a similar MII index compared to the group supplemented with 10% FCS. Leptin did not increase the percentage of cytoplasmically matured oocytes in terms of cortical granule migration rate, whereas a significantly higher index was found in the FCS group (P<0.001). Oestradiol concentrations in spent media were higher in the FCS group compared to other treatments (P<0.001). Leptin-stimulated nuclear oocyte maturation was significantly impaired when leptin-induced JAK2/STAT3 and MEK 1/2 activation was suppressed by the inhibitors (P<0.001). Steroid secretion of COC was not affected by leptin activation of JAK2/STAT3 or MEK 1/2 pathways. In conclusion, JAK2/STAT3 and MEK 1/2 pathways mediate the enhancement of nuclear oocyte maturation by leptin; however, neither cytoplasmic oocyte maturation nor steroidogenic response of COC were improved in the present rabbit model.

Free access

A Jawerbaum, R Higa, V White, E Capobianco, C Pustovrh, D Sinner, N Martínez and E González

Maternal diabetes significantly increases the risk of congenital malformation, a syndrome known as diabetic embryopathy. Nitric oxide (NO), implicated in embryogenesis, has been found elevated in embryos from diabetic rats during organogenesis. The developmental signaling molecules endothelin-1 (ET-1) and 15-deoxy Δ12,14prostaglandin J2 (15dPGJ2) downregulate embryonic NO levels. In the presence of NO and superoxide, formation of the potent oxidant peroxynitrite may occur. Therefore, we investigated peroxynitrite-induced damage, ET-1 and 15dPGJ2 concentrations, and the capability of ET-1, 15dPGJ2 and prostaglandin E2 (PGE2) to regulate NO production in embryos from severely diabetic rats (streptozotocin-induced before pregnancy). We found intense nitrotyrosine immunostaining (an index of peroxynitrite-induced damage) in neural folds, neural tube and developing heart of embryos from diabetic rats (P < 0.001 vs controls). We also found reduced ET-1 (P < 0.001) and 15dPGJ2 (P < 0.001) concentrations in embryos from diabetic rats when compared with controls. In addition, the inhibitory effect of ET-1, 15dPGJ2 and PGE2 on NO production found in control embryos was not observed in embryos from severely diabetic rats. In conclusion, both the demonstrated peroxynitrite-induced damage and the altered levels and function of multiple signaling molecules involved in the regulation of NO production provide supportive evidence of nitrosative stress in diabetic embryopathy.

Free access

S Gimeno-Martos, M González-Arto, A Casao, M Gallego, J A Cebrián-Pérez, T Muiño-Blanco and R Pérez-Pé

This study was based on the assumption that steroid hormones present in the female genital tract may have a rapid effect on ram spermatozoa by interaction with specific surface receptors. We demonstrate the presence of progesterone (PR) and estrogen (ER) receptors in ram spermatozoa, their localization changes during in vitro capacitation and the actions of progesterone (P4) and 17β-estradiol (E2) on ram sperm functionality. Immunolocalization assays revealed the presence of PR mainly at the equatorial region of ram spermatozoa. Western blot analyses showed three bands in ram sperm protein extracts of 40–45 kDa, compatible with those reported for PR in the human sperm membrane, and both classical estrogen receptors (66 kDa, ERα and 55 kDa, ERβ). ERα was located in the postacrosomal region of all the spermatozoa and ERβ on the apical region of 63.7% of the cells. The presence of ERβ was correlated with the percentage of non-capacitated spermatozoa evaluated by chlortetracycline staining (R = 0.848, P < 0.001). This significantly decreased after in vitro capacitation and nearly disappeared when acrosome reaction was induced. The addition of P4 and E2 before in vitro capacitation resulted in a higher (P < 0.001) acrosome-reacted sperm rate compared with the control (13.0%), noticeably greater after 3 h and when added to a high-cAMP medium (37.3% and 47.0% with E2 and P4, respectively). In conclusion, the results of this study demonstrate for the first time that ovine spermatozoa have progesterone and estrogen receptors and that both steroid hormones are related with the induction of the acrosome reaction.

Free access

A Gonzalez-Bulnes, C Ovilo, C J Lopez-Bote, S Astiz, M Ayuso, M L Perez-Solana, R Sanchez-Sanchez and L Torres-Rovira

The effects of undernutrition during pregnancy on prenatal and postnatal development of the offspring were evaluated in sows with obesity/leptin resistance. Females were fed, from day 35 of pregnancy onwards, a diet fulfilling either 100% (group control, n=10) or 50% of the nutritional requirements (group underfed, n=10). In the control group, maternal body weight increased during pregnancy (P<0.05) while it decreased or remained steady in the underfed group. At days 75 and 100 of gestation, plasma triglycerides were lower but urea levels were higher in restricted than in control sows (P<0.05 for both). Assessment of the offspring indicated that the trunk diameter was always smaller in the restricted group (P<0.01 at day 50, P<0.005 at days 75 and 100 and P<0.0001 at birth) while head measurements were similar through pregnancy, although smaller in the restricted than in the control group at birth (P<0.05). Newborns from restricted sows were also lighter than offspring from control females (P<0.01) and had higher incidence of growth retardation (P<0.01). Afterwards, during lactation, early postnatal growth in restricted piglets was modulated by gender. At weaning, males from restricted sows were still lighter than their control counterparts (P<0.05), while females from control and underfed sows were similar. Thus, the current study indicates a gender-related differential effect in the growth patterns of the piglets, with females from restricted sows evidencing catch-up growth to neutralise prenatal retardation and reaching similar development than control counterparts.

Free access

R A Picazo, J P García Ruiz, J Santiago Moreno, A González de Bulnes, J Muñoz, G Silván, P L Lorenzo and J C Illera

The actions of prolactin (PRL) on target cells depend on the type of prolactin receptor (PRLr) predominantly expressed, particularly whether the long PRLr isoform is expressed. The aims of this study were to determine the cellular localization and the changes in expression of long and short PRLr isoforms in sheep ovary throughout the estrous cycle. Long and short PRLrs were localized mostly in the same ovarian cells. Maximum signal intensity, particularly for long PRLrs, was found in stromal cells surrounding primordial and primary follicles, and, for both PRLrs, in granulosa cells of preantral follicles and in luteal cells. Moderate signal intensity for PRLrs was found in theca cells of preantral to ovulatory follicles, and in granulosa cells of antral follicles up to the gonadotropin-dependent stage. Decreasing immunoreactivity to PRLrs was found in granulosa cells of gonadotropin-dependent to ovulatory follicles. For long PRLrs in particular, no signal was found in mural granulosa cells of gonadotropin-dependent follicles; for both isoforms, no signal was found in most granulosa cells of ovulatory follicles. In primordial to gonadotropin-dependent follicles, cellular localization of PRLr was similar on days 0, 10 and 15 of the cycle. Oocytes consistently showed positive immunostaining for PRLrs. Comparative RT-PCR analysis of long and short PRLr expression showed that the short isoform is evenly expressed throughout the estrous cycle, whereas the expression of the long form increases at the time of estrus and decreases at mid-luteal phase and at the onset of the follicular phase. Expression of long PRLrs was greater than that of short PRLrs on day 0 of cycle; expression of both isoforms was similar on day 10 and on day 15, long PRLrs expression was lower than that of short PRLrs. Our results indicate that in sheep ovary, the maximum responsiveness to PRL might occur during the preovulatory phase of the estrous cycle.

Free access

M C Pustovrh, A Jawerbaum, V White, E Capobianco, R Higa, N Martínez, J J López-Costa and E González

Matrix metalloproteinases (MMPs) play an important role in tissue remodeling that accompanies the rapid growth, differentiation, and structural changes of the placenta and several fetal organs. In the present study, we investigated whether the diabetic maternal environment may alter the regulatory homeostasis exerted by nitric oxide (NO) on MMPs activity in the feto-placental unit from rats at midgestation. We found that NADPH-diaphorase activity, which reflects the distribution and activity of NO synthases (NOS), was increased in both placenta and fetuses from diabetic rats when compared with controls. In addition, while a NO donor enhanced MMP2 and MMP9 activities, a NOS inhibitor reduced these activities in the maternal side of the placenta from control rats. This regulatory effect of NO was only observed on MMP9 in the diabetic group. On the other hand, the NO donor did not modify MMP2 and MMP9 activities, while the NOS inhibitor reduced MMP9 activity in the fetal side of both control and diabetic placentas. In the fetuses, MMP2 was enhanced by the NO donor and reduced by the NO inhibitor in both fetuses from control and diabetic rats. Overall, this study demonstrates that NO is able to modulate the activation of MMPs in the feto-placental unit, and provides supportive evidence that increased NOS activity leads to NO overproduction in the feto-placental unit from diabetic rats, an alteration closely related to the observed MMPs dysregulation that may have profound implications in the formation and function of the placenta and the fetal organs.