Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Rui Hua x
Clear All Modify Search
Free access

Rui Hua, Yao Zhou, Biao Wu, Zhongwei Huang, Yongtong Zhu, Yali Song, Yanhong Yu, Hong Li and Song Quan

Triclosan (TCS) exists ubiquitously in the environment. Several in vitro and in vivo studies have demonstrated that TCS exerts endocrine disruptive effects on reproduction, but data from human populations are limited and conflicting. The objective of our study was to investigate whether high urinary TCS concentration is adversely associated with early reproductive outcomes in women undergoing in vitro fertilization-embryo transfer (IVF-ET). This prospective cohort study was conducted from September 2015 to June 2016, including 156 infertile women undergoing their first IVF-ET cycle. Two spot urine samples were collected prior to oocyte retrieval for TCS detection using solid-phase extraction (SPE) and liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS). Linear regression model and binary logistic regression model were used to evaluate the association between urinary TCS concentrations and IVF outcomes. The intake of aquaculture food may have positive influences on urinary TCS concentrations. After adjustment for age, body mass index (BMI), baseline follicle-stimulating hormone (FSH), antral follicle count (AFC) and smoking status, a significant decrease of top quality embryo formation and implantation rate was observed in patients with urinary TCS concentration greater than or equal to the median level (0.045 μmol/mol Cr). We concluded that TCS exposure may exert negative effects during early stages of human reproduction.

Free access

Huan Zhang, Xiaohua Jiang, Yuanwei Zhang, Bo Xu, Juan Hua, Tieliang Ma, Wei Zheng, Rui Sun, Wei Shen, Howard J Cooke, Qiaomei Hao, Jie Qiao and Qinghua Shi

In mammals, the primordial follicle pool, providing all oocytes available to a female throughout her reproductive life, is established perinatally. Dysregulation of primordial follicle assembly results in female reproductive diseases, such as premature ovarian insufficiency and infertility. Female mice lacking Dicer1 (Dicer), a gene required for biogenesis of microRNAs, show abnormal morphology of follicles and infertility. However, the contribution of individual microRNAs to primordial follicle assembly remains largely unknown. Here, we report that microRNA 376a (miR-376a) regulates primordial follicle assembly by modulating the expression of proliferating cell nuclear antigen (Pcna), a gene we previously reported to regulate primordial follicle assembly by regulating oocyte apoptosis in mouse ovaries. miR-376a was shown to be negatively correlated with Pcna mRNA expression in fetal and neonatal mouse ovaries and to directly bind to Pcna mRNA 3′ untranslated region. Cultured 18.5 days postcoitum mouse ovaries transfected with miR-376a exhibited decreased Pcna expression both in protein and mRNA levels. Moreover, miR-376a overexpression significantly increased primordial follicles and reduced apoptosis of oocytes, which was very similar to those in ovaries co-transfected with miR-376a and siRNAs targeting Pcna. Taken together, our results demonstrate that miR-376a regulates primordial follicle assembly by modulating the expression of Pcna. To our knowledge, this is the first microRNA–target mRNA pair that has been reported to regulate mammalian primordial follicle assembly and further our understanding of the regulation of primordial follicle assembly.

Restricted access

Mian Liu, Xia Chen, Qing-Xian Chang, Rui Hua, Yan-Xing Wei, Li-Ping Huang, Yi-xin Liao, Xiao-Jing Yue, Hao-Yue Hu, Fei Sun, Si-Jia Jiang, Song Quan and Yan-Hong Yu

Small extracellular vesicles (sEVs) are important mediators of cell-to-cell communication involved in the successful establishment of a pregnancy. Human decidual stromal cells play a key role in regulating trophoblast invasion. Nevertheless, the regulatory functions of decidual stromal cells-derived sEVs in human trophoblast cells are still unclear. In this study, primary human decidual stromal cells were isolated, and immortalized human endometrial stromal cell line (HESCs) were decidualized into human decidual stromal cells (HDSCs) using hormonal cocktail containing medroxy progesterone 17-acetate (MPA), estrogen and cAMP analog. HDSC-sEVs were isolated from both primary human decidual stromal cells and immortal HDSCs, respectively, and identified by transmission electron microscopy and western blotting. EV uptake assay indicated that HDSC-sEVs could be uptaken by trophoblast cells. HDSC-sEVs could increase the invasiveness and the expression level of N-cadherin of trophoblast cells with elevated phosphorylation of SMAD2 and SMAD3 in the cells. Silencing of N-cadherin could block cell invasion induced by HDSC-sEVs, while knockdown of SMAD2 and SMAD3 could inhibit the upregulation of N-cadherin in trophoblast cells. Taken together, our results suggested a regulatory effect of HDSC-sEVs in the invasion of trophoblast cells, and HDSC-sEVs may be important mediators of trophoblasts during embryo implantation and placentation.