Expression of cyclooxygenase 2 (COX2, now known as PTGS2), prostaglandin E2 synthase (PTGES, PGES), and prostaglandin F2α synthase (PGFS), of the respective receptors PTGFR (FP), PTGER2 (EP2), and PTGER4 (EP4) and of the progesterone receptor (PGR, PR) was assessed by real-time PCR, immunohistochemistry (IHC), or in situ hybridization (ISH) in utero/placental tissue samples collected from three to five bitches on days 8–12 (pre-implantation), 18–25 (post-implantation), and 35–40 (mid-gestation) of pregnancy and during the prepartal luteolysis. Additionally, ten mid-pregnant bitches were treated with the antiprogestin aglepristone (10 mg/kg bw (2×/24 h)); ovariohysterectomy was 24 and 72 h after the second treatment. Plasma progesterone and 15-ketodihydro-PGF2α (PGFM) concentrations were determined by RIA. Expression of the PGR was highest before implantation and primarily located to the endometrium; expression in the placenta was restricted to the decidual cells. PTGS2 was constantly low expressed until mid-gestation; a strong upregulation occurred at prepartal luteolysis concomitant with an increase in PGFM. PGFS was upregulated after implantation and significantly elevated through early and mid-gestation. PTGES showed a gradual increase and a strong prepartal upregulation. PTGFR, PTGER2, and PTGER4 were downregulated after implantation; a gradual upregulation of PTGFR and PTGER2 occurred towards parturition. ISH and IHC co-localized PGFS, PTGFR, PTGES, and PTGS2 in the trophoblast and endometrium. The changes following application of aglepristone were in the same direction as those observed from mid-gestation to prepartal luteolysis. These data suggest that the prepartal increase of PGF2α results from a strong upregulation of PTGS2 in the fetal trophoblast with the withdrawal of progesterone having a signalling function and the decidual cells playing a key role in the underlying cell-to-cell crosstalk.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Selim Aslan x
- Refine by Access: All content x
Mariusz Pawel Kowalewski, Hakki Bülent Beceriklisoy, Christiane Pfarrer, Selim Aslan, Hans Kindahl, Ibrahim Kücükaslan, and Bernd Hoffmann
Felix R Graubner, Alois Boos, Selim Aslan, Ibrahim Kücükaslan, and Mariusz P Kowalewski
For many years, modifications of the uterine extracellular matrix (ECM) during gestation have not been considered as critical for successful canine (Canis lupus familiaris) pregnancy. However, previous reports indicated an effect of free-floating blastocysts on the composition of the uterine ECM. Here, the expression of selected genes involved in structural functions, cell-to-cell communication and inhibition of matrix metalloproteinases were targeted utilizing qPCR and immunohistochemistry. We found that canine free-floating embryos affect gene expression of FN1, ECM1 and TIMP4. This seems to be associated with modulation of trophoblast invasion, and proliferative and adhesive functions of the uterus. Although not modulated at the beginning of pregnancy, the decrease of structural ECM components (i.e. COL1, -3, -4 and LAMA 2) from pre-implantation toward post-implantation at placentation sites appears to be associated with softening of the tissue in preparation for trophoblast invasion. The further decrease of these components at placentation sites at the time of prepartum luteolysis seems to be associated with preparation for the release of fetal membranes. Reflecting a high degree of communication, intercellular cell adhesion molecules are induced following placentation (Cx26) or increase gradually toward prepartum luteolysis (Cx43). The spatio-temporal expression of TIMPs suggests their active involvement in modulating fetal invasiveness, and together with ECM1, they appear to protect deeper endometrial structures from trophoblast invasion. With this, the dog appears to be an interesting model for investigating placental functions in other species, e.g. in humans in which Placenta accreta appears to share several similarities with canine subinvolution of placental sites (SIPS). In summary, the canine uterine ECM is only moderately modified in early pregnancy, but undergoes vigorous reorganization processes in the uterus and placenta following implantation.
Marta Nowak, Aykut Gram, Alois Boos, Selim Aslan, Serhan S Ay, Firdevs Önyay, and Mariusz P Kowalewski
Relaxin (RLN) is a key hormone of pregnancy in mammals best known for its involvement in connective tissue remodeling. In the domestic dog, placental RLN is the only known endocrine marker of pregnancy. However, knowledge is sparse regarding the spatio-temporal expression of RLN and its receptors (RXFP1 and RXFP2) in the canine uterus and placenta. Here, their expression was investigated in the pre-implantation uterus and utero-placental compartments (UtPl) at selected time points during gestation: post-implantation, mid-gestation, and at normal and antigestagen-induced luteolysis/abortion. Immunohistochemistry with newly generated, canine-specific antisera, in situ hybridization and semi-quantitative PCR were applied. In compartmentalization studies, placental and endometrial RLN increased continuously toward prepartum. The placental RXFP1 was time-related and highest during post-implantation and decreased together with RXFP2 at prepartum luteolysis. The endometrial levels of both receptors did not vary greatly, but myometrial RXFP2 decreased from mid-gestation to prepartum luteolysis. Antigestagen treatment resulted in suppression of RLN in UtPl and decreased RXFP1 and RXFP2 in the uterus. The placental RLN was localized mainly in the cytotrophoblast. Additionally, RXFP1 stained strongly in placental endothelial cells while RXFP2 was found mainly in maternal decidual cells. Uterine staining for all targets was found in epithelial cellular constituents and in myometrium. Finally, besides its endocrine functions, RLN seems to be involved in auto-/paracrine regulation of utero-placental functions in dogs in a time-dependent manner. New insights into feto-maternal communication was provided, in particular regarding the localization of RXFP2 in the maternal decidual cells, implying functional roles of RLN during the decidualization process.