Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Seung-Bin Yoon x
  • All content x
Clear All Modify Search
Restricted access

Mun-Hyeong Lee, Pil-Soo Jeong, Bo-Woong Sim, Hyo-Gu Kang, Min Ju Kim, Sanghoon Lee, Seung-Bin Yoon, Philyong Kang, Young-Ho Park, Ji-Su Kim, Bong-Seok Song, Deog-Bon Koo, and Sun-Uk Kim

In the mammalian female reproductive tract, physiological oxygen tension is lower than that of the atmosphere. Therefore, to mimic in vivo conditions during in vitro culture (IVC) of mammalian early embryos, 5% oxygen has been extensively used instead of 20%. However, the potential effect of hypoxia on the yield of early embryos with high developmental competence remains unknown or controversial, especially in pigs. In the present study, we examined the effects of low oxygen tension under different oxygen tension levels on early developmental competence of parthenogenetically activated (PA) and in vitro-fertilized (IVF) porcine embryos. Unlike the 5% and 20% oxygen groups, exposure of PA embryos to 1% oxygen tension, especially in early-phase IVC (0–2 days), greatly decreased several developmental competence parameters including blastocyst formation rate, blastocyst size, total cell number, inner cell mass (ICM) to trophectoderm (TE) ratio, and cellular survival rate. In contrast, 1% oxygen tension did not affect developmental parameters during the middle (2–4 days) and late phases (4–6 days) of IVC. Interestingly, induction of autophagy by rapamycin treatment markedly restored the developmental parameters of PA and IVF embryos cultured with 1% oxygen tension during early-phase IVC, to meet the levels of the other groups. Together, these results suggest that the early development of porcine embryos depends on crosstalk between oxygen tension and autophagy. Future studies of this relationship should explore the developmental events governing early embryonic development to produce embryos with high developmental competence in vitro.

Free access

Hae-Jun Yang, Sanghoon Lee, Bo-Woong Sim, Pil-Soo Jeong, Seon-A Choi, Young-Ho Park, Bong-Seok Song, Seung-Bin Yoon, Philyong Kang, Kang-Jin Jeong, Young-Hyun Kim, Jae-Won Huh, Sang-Rae Lee, Deog-Bon Koo, Young-Kug Choo, Ji-Su Kim, and Sun-Uk Kim

The developmental competence of in vitro-matured oocytes is still lower than that of the in vivo-matured oocytes due to precocious meiotic resumption and inappropriate cytoplasmic maturation. Although numerous efforts have been attempted to accomplish better in vitro maturation (IVM) condition, only limited progress has been achieved. Thus, a current study was conducted to examine the effects of 6-diazo-5-oxo-l-norleucine (DON, an inhibitor of hyaluronan synthesis) during the first half period of IVM on nuclear/cytoplasmic maturation of porcine oocytes and subsequent embryonic development. Based on the observation of the nucleus pattern, metaphase II (MII) oocyte production rate in 1 µM DON group was significantly higher than other groups at 44 h of IVM. The 1 µM of DON was suggested to be optimal for porcine IVM and was therefore used for further investigation. Meiotic arrest effect of DON was maximal at 6 h of IVM, which was supported by the maintenance of significantly higher intra-oocyte cAMP level. In addition, increased pERK1/2 levels and clear rearrangement of cortical granules in membrane of MII oocytes matured with DON provided the evidence for balanced meiosis progression between nuclear and cytoplasmic maturation. Subsequently, DON significantly improved blastocyst formation rate, total cell numbers, and cellular survival in blastocysts after parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Altogether, our results showed for the first time that 1 µM DON can be used to increase the yield of developmentally competent MII oocytes by synchronizing nuclear/cytoplasmic maturation, and it subsequently improves embryo developmental competence.