Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Shinnosuke Honda x
  • Refine by access: All content x
Clear All Modify Search
Dan Liu Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Dan Liu in
Google Scholar
PubMed
Close
,
Takuto Yamamoto Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Takuto Yamamoto in
Google Scholar
PubMed
Close
,
Haoxue Wang Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Haoxue Wang in
Google Scholar
PubMed
Close
,
Naojiro Minami Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Naojiro Minami in
Google Scholar
PubMed
Close
,
Shinnosuke Honda Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Shinnosuke Honda in
Google Scholar
PubMed
Close
, and
Shuntaro Ikeda Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Search for other papers by Shuntaro Ikeda in
Google Scholar
PubMed
Close

In brief

Proper early embryonic development in mammals relies on precise cellular signaling pathways. This study reveals that NSUN5 is crucial for the regulation of the Hippo pathway, ensuring normal proliferation and differentiation in mouse preimplantation embryos.

Abstract

NOL1/NOP2/Sun domain family, member 5 (NSUN5) is an enzyme belonging to the 5-methylcytosine (m5C) writer family that modifies rRNA and mRNA. Our data revealed an upregulation of Nsun5 at the two-cell stage of mouse preimplantation development, suggesting its significance in early embryonic development. Given m5C’s important role in stabilizing rRNA and mRNA and the Hippo signaling pathway’s critical function in lineage segregation during embryogenesis, we hypothesized that NSUN5 controls cell differentiation by regulating the expression of components of the Hippo signaling pathway in mouse early embryos. To examine this hypothesis, we employed Nsun5-specific small interfering RNAs for targeted gene silencing in mouse preimplantation embryos. Nsun5 knockdown resulted in significant developmental impairments including reduced blastocyst formation, smaller size of blastocysts, and impaired hatching from the zona pellucida. Nsun5 knockdown also led to decreased cell numbers and increased apoptosis in embryos. We also observed diminished nuclear translocation of yes-associated protein 1 (YAP1) in Nsun5 knockdown embryos at the morula stage, indicating disrupted cell differentiation. This disruption was further evidenced by an altered ratio of CDX2-positive to OCT4-positive cells. Furthermore, Nsun5 depletion was found to upregulate the Hippo signaling-related key genes, Lats1 and Lats2 at the morula stage. Our findings underscore the essential role of Nsun5 in early embryonic development by affecting cell proliferation, YAP1 nuclear translocation, and the Hippo pathway.

Restricted access