Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Shuai Lin x
  • Refine by Access: All content x
Clear All Modify Search
Tao Yu School of Life Science, Anhui Medical University, Hefei, Anhui, China

Search for other papers by Tao Yu in
Google Scholar
PubMed
Close
,
Shuai Lin School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China

Search for other papers by Shuai Lin in
Google Scholar
PubMed
Close
,
Rui Xu School of Life Science, Anhui Medical University, Hefei, Anhui, China

Search for other papers by Rui Xu in
Google Scholar
PubMed
Close
,
Tian-Xi Du Laboratory Animal Center, Anhui Medical University, Hefei, Anhui, China

Search for other papers by Tian-Xi Du in
Google Scholar
PubMed
Close
,
Yang Li School of Life Science, Anhui Medical University, Hefei, Anhui, China

Search for other papers by Yang Li in
Google Scholar
PubMed
Close
,
Hui Gao Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China

Search for other papers by Hui Gao in
Google Scholar
PubMed
Close
,
Hong-Lu Diao Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China

Search for other papers by Hong-Lu Diao in
Google Scholar
PubMed
Close
, and
Xiu-Hong Zhang School of Life Science, Anhui Medical University, Hefei, Anhui, China

Search for other papers by Xiu-Hong Zhang in
Google Scholar
PubMed
Close

Embryo implantation is a crucial step for the successful establishment of mammalian pregnancy. Cyclophilin A (CYPA) is a ubiquitously expressed intracellular protein and is secreted in response to inflammatory stimuli to regulate diverse cellular functions. However, there are currently no reports about the role of CYPA in embryo implantation. Here, we examine the expression pattern of CYPA during mouse early pregnancy and explore the potential role of CYPA during implantation. CYPA is expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy, but not at inter-implantation sites. In ovariectomized mice, estrogen and progesterone significantly stimulate CYPA expression. When pregnant mice are injected intraperitoneally with CYPA inhibitor, the numbers of implantation sites are significantly reduced. Using an in vitro stromal cell culture system, Ppia siRNA knockdown of CYPA and CYPA-specific inhibitor treatment partially inhibits levels of CD147, MMP3 and MMP9. Decreased CYPA expression also significantly inhibits Stat3 activity and expands estrogen responsiveness. Taken together, CYPA may play an important role during mouse embryo implantation.

Restricted access
Shuai Lin College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Shuai Lin in
Google Scholar
PubMed
Close
,
Yu-Yuan Zhu College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Yu-Yuan Zhu in
Google Scholar
PubMed
Close
,
Wei Hu College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Wei Hu in
Google Scholar
PubMed
Close
,
Yan Yang College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Yan Yang in
Google Scholar
PubMed
Close
,
Jia-Mei Luo College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Jia-Mei Luo in
Google Scholar
PubMed
Close
,
Shi-Jun Hu Institute for Cardiovascular Science, Soochow University, Soochow, China

Search for other papers by Shi-Jun Hu in
Google Scholar
PubMed
Close
, and
Zeng-Ming Yang College of Veterinary Medicine, South China Agricultural University, Guangzhou, China

Search for other papers by Zeng-Ming Yang in
Google Scholar
PubMed
Close

Decidualization is required for the successful establishment of pregnancy in rodents and primates. Fatty acid desaturase 3 (Fads3) belongs to the fatty acid desaturase family, which is a crucial enzyme for highly unsaturated fatty acid biosynthesis. However, the expression, regulation and function of Fads3 during early pregnancy in mice are still unknown. In this study, we examined Fads3 expression, regulation and function during mouse decidualization. The expression of Fads3 is detected in the subluminal stromal cells at implantation site on day 5 of pregnancy, but not at inter-implantation site and in day 5 pseudopregnant uteri. Compared to delayed implantation, Fads3 is strongly expressed after delayed implantation is activated by estrogen treatment. From days 6 to 8, Fads3 mRNA signals are significantly detected in the decidua. In ovariectomized mice, estrogen significantly stimulates Fads3 expression. However, estrogen has no effect on Fads3 expression in ovariectomized ERα-deficient mice, suggesting that estrogen regulation on Fads3 expression is ERα dependent. When ovariectomized mice were treated with progesterone, Fads3 expression is significantly increased by progesterone. Progesterone stimulation on Fads3 expression is also detected in cultured stromal cells, which is abrogated by RU486 treatment. These data indicate that progesterone upregulation on Fads3 expression is progesterone receptor-dependent. Fads3 knockdown by siRNA reduces in vitro decidualization of mouse stromal cells. Taken together, Fads3 may play an important role during mouse decidualization.

Free access
Fenfen Xie Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China
Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China
Department of Histology and Embryology, Anhui Medical University, Hefei, China

Search for other papers by Fenfen Xie in
Google Scholar
PubMed
Close
,
Junhui Zhang Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China
Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China

Search for other papers by Junhui Zhang in
Google Scholar
PubMed
Close
,
Muxin Zhai First Clinical Medical College, Anhui Medical University, Hefei, China

Search for other papers by Muxin Zhai in
Google Scholar
PubMed
Close
,
Yajing Liu Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China
Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China

Search for other papers by Yajing Liu in
Google Scholar
PubMed
Close
,
Hui Hu First Clinical Medical College, Anhui Medical University, Hefei, China

Search for other papers by Hui Hu in
Google Scholar
PubMed
Close
,
Zhen Yu Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China

Search for other papers by Zhen Yu in
Google Scholar
PubMed
Close
,
Junqiang Zhang Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China

Search for other papers by Junqiang Zhang in
Google Scholar
PubMed
Close
,
Shuai Lin Department of Histology and Embryology, Anhui Medical University, Hefei, China

Search for other papers by Shuai Lin in
Google Scholar
PubMed
Close
,
Dan Liang Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China
Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China

Search for other papers by Dan Liang in
Google Scholar
PubMed
Close
, and
Yunxia Cao Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei, China
Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, China

Search for other papers by Yunxia Cao in
Google Scholar
PubMed
Close

Emerging evidence has demonstrated that melatonin (MT) plays a crucial role in regulating mammalian reproductive functions. It has been reported that MT has a protective effect on polycystic ovary syndrome (PCOS). However, the protective mechanisms of MT remain poorly understood. This study aims to explore the effect of MT on ovarian function in PCOS and to elucidate the relevant molecular mechanisms in vivo and in vitro. We first analysed MT expression levels in the follicular fluid of PCOS patients. A significant reduction in MT expression levels was noted in PCOS patients. Intriguingly, reduced MT levels correlated with serum testosterone and inflammatory cytokine levels in follicular fluid. Moreover, we confirmed the protective function of MT through regulating autophagy in a DHEA-induced PCOS rat model. Autophagy was activated in the ovarian tissue of the PCOS rat model, whereas additional MT inhibited autophagy by increasing PI3K−-Akt pathway expression. In addition, serum-free testosterone, inflammatory and apoptosis indexes were reduced after MT supplementation. Furthermore, we also found that MT suppressed autophagy and apoptosis by activating the PI3K-Akt pathway in the DHEA-exposed human granulosa cell line KGN. Our study showed that MT ameliorated ovarian dysfunction by regulating autophagy in DHEA-induced PCOS via the PI3K-Akt pathway, revealing a potential therapeutic drug target for PCOS.

Restricted access