Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Susana B Rulli x
  • All content x
Clear All Modify Search
Free access

Susana B Rulli and Ilpo Huhtaniemi

The two gonadotrophins, follicle-stimulating hormone and luteinising hormone, are pivotal regulators of the development and maintenance of normal fertility by maintaining testicular and ovarian endocrine function and gametogenesis. Too low gonadotrophin secretion, i.e. hypogonadotrophic hypogonadism, is a common cause of infertility. But there are also physiological and pathophysiological conditions where gonadotrophin secretion and/or action are either transiently or chronically elevated, such as pregnancy, pituitary tumours, polycystic ovarian syndrome, activating gonadotrophin receptor mutations, perimenopause and menopause. These situations can be either the primary or secondary cause of infertility and gonadal pathologies in both sexes. Also the role of gonadotrophins as tumour promoters is possible. Recently, the possibility to combine information from genetically modified mice and human phenotypes in connection with mutations of gonadotrophin or gonadotrophin receptor genes has elucidated many less well known mechanisms involved in dysregulation of gonadotrophin function. Among the genetically modified mouse models, transgenic mice with gonadotrophin hypersecretion have been developed during the last few years. In this review, we describe the key findings on transgenic mouse models overexpressing gonadotrophins and present their possible implications in related human pathologies. In addition, we provide examples of genetic mouse models with secondary effects on gonadotrophin production and, consequently, on gonadal function.

Free access

Kim C Jonas, Olayiwola O Oduwole, Hellevi Peltoketo, Susana B Rulli, and Ilpo T Huhtaniemi

The advent of technologies to genetically manipulate the mouse genome has revolutionised research approaches, providing a unique platform to study the causality of reproductive disorders in vivo. With the relative ease of generating genetically modified (GM) mouse models, the last two decades have yielded multiple loss-of-function and gain-of-function mutation mouse models to explore the role of gonadotrophins and their receptors in reproductive pathologies. This work has provided key insights into the molecular mechanisms underlying reproductive disorders with altered gonadotrophin action, revealing the fundamental roles of these pituitary hormones and their receptors in the hypothalamic–pituitary–gonadal axis. This review will describe GM mouse models of gonadotrophins and their receptors with enhanced or diminished actions, specifically focusing on the male. We will discuss the mechanistic insights gained from these models into male reproductive disorders, and the relationship and understanding provided into male human reproductive disorders originating from altered gonadotrophin action.

Restricted access

Matteo Duque Rodriguez, Andrés Gambini, Laura D Ratner, Adrian J Sestelo, Olinda Briski, Cynthia Gutnisky, Susana B Rulli, Rafael Fernández Martin, Pablo Cetica, and Daniel F Salamone

Heterospecific embryo transfer of an endangered species has been carried out using recipients from related domestic females. Aggregation of an embryo from an endangered species with a tetraploid embryo from the species to be transferred could improve the development of pregnancy to term. The main objective of the present study was to analyze embryo aggregation in domestic cat model using hybrid embryos. For this purpose, we compared in vitro development of synchronic (Sync) or asynchronic (Async) and asynchronic with a tetraploid (Async4n) aggregation of domestic cat IVF embryos. Furthermore, aggregated blastocyst quality was analyzed by evaluation of the total cell number, cell allocation by mitotrackers staining of embryonic cells, expression of Oct4, Nanog, Sox2, Cdx2 genes, number of OCT4+ nuclei, and presence of DNA fragmentation. Additionally, the developmental rates of Async4n aggregation of domestic cat with Leopardus geoffroyi hybrid (hLg) embryos were evaluated. Async aggregation increased blastocyst cell number and the number of OCT4+ nuclei as compared to non-aggregated diploid (2n) and tetraploid (4n) embryos. Moreover, blastocysts produced by Async4n aggregation showed reduced rates of fragmented DNA. No differences were found in the expression of the pluripotent genes, with exception of the Cdx2 expression, which was higher in 4n and aggregated embryos as compared to the control group. Interestingly, hybrids embryos derived by Async4n aggregation with domestic cat embryos had similar rates of blastocysts development as the control. Altogether, the findings support the use of two-cell-fused embryos to generate tetraploid blastomeres and demonstrate that Async4n aggregation generates good quality embryos.