Search Results

You are looking at 1 - 3 of 3 items for

  • Author: T Rajendra Kumar x
  • Refine by Access: All content x
Clear All Modify Search
Free access

T Rajendra Kumar

A number of biochemical and physiological studies elucidated the roles of pituitary and placental glycoprotein hormones. Advances in the past two decades in manipulating the mouse genome by random or site-specific mutagenesis have heralded a new dimension to our understanding of the biology of gonadotropins. It is now possible to model many human reproductive disorders involving gonadotropins/gonadotropin-signaling in the mouse. Mutant mice selectively lacking either FSH or LH or their cognate receptors have been generated. The gonadotropin ligand and the corresponding receptor knockout mice mostly phenocopy each other. Analyses with these genetic models confirmed earlier physiological studies; in addition they also revealed novel roles for gonadotropins previously unrecognized. While FSH action seems dispensable for male but not female fertility, absence of LH causes infertility in both the sexes. While Sertoli cell number and germ cell carrying capacity of the Sertoli cells in compromised in FSH mutants, both somatic and germ cell lineages are affected in the LH mutants resulting in complete male infertility. FSH mutant females demonstrate a preantral stage block in folliculogenesis and FSH alone is not sufficient to promote full folliculogenesis in the absence of LH. Pre-ovulatory stage follicles do not form and most of the follicles undergo apoptosis in the absence of LH. Many extra-gonadal phenotypes have been described for the receptor knockout mice and whether these bear any resemblances to those in patients with similar inactivating mutations in the receptors for FSH and LH remains an open question. Thus the in vivo models will continue to have a significant impact in understanding gonadotropin physiology and pathophysiology and serve as novel genetic tools to study signaling mechanisms in the gonads.

Free access

Leah E Simon, Zhenghui Liu, George R Bousfield, T Rajendra Kumar, and Francesca E Duncan

Female reproductive aging is characterized by a rise in follicle-stimulating hormone (FSH) levels during peri-menopause. N-linked glycans are co-translationally attached to the Asn7 and Asn24 residues on the FSHβ subunit. Differences in the number of N-glycans on the FSHβ subunit result in distinct glycoforms: hypo-glycosylated (FSH21/18, glycans absent on either Asn24 or Asn7, respectively) or fully-glycosylated (FSH24, glycans present on both Asn7 and Asn24). The relative abundance of FSH glycoforms changes with advanced reproductive age, shifting from predominantly FSH21/18 in younger women to FSH24 in older women. Previous in vitro studies in granulosa cell lines and in vivo studies using Fshb-null mice showed these glycoforms elicit differential bioactivities. However, the direct effects of FSH glycoforms on the mouse ovarian follicle have not yet been determined. In this study, we isolated secondary follicles from pre-pubertal mice and treated them with 20- or 100 ng/mL purified recombinant FSH glycoforms for 1 h or 18–20 h. Analysis of phosphorylated PKA substrates showed that glycoforms were bioactive in follicles following 1-h treatment, although differential bioactivity was only observed with the 100 ng/mL dose. Treatment of follicles with 100 ng/mL of each glycoform also induced distinct expression patterns of FSH-responsive genes as assessed by qPCR, consistent with differential function. Our results, therefore, indicate that FSH glycoforms are bioactive in isolated murine follicles.

Free access

Rachel C Hirst, Margaret H Abel, Vivienne Wilkins, Christine Simpson, Phil G Knight, Fu-Ping Zhang, Ilpo Huhtaniemi, T Rajendra Kumar, and Harry M Charlton

Measurement of inhibins A and B in the serum of normal cyclic rodents has implicated FSH in the regulation of these peptides within the ovary. To extend these observations we have used a panel of mutant mice carrying mutations which affect either the production of, or the ability to respond to, FSH and LH. As a consequence, the females are infertile and show different degrees of follicular development. The aim of this study was to measure inhibin gene transcription in the ovaries of these mutant females together with inhibin protein levels in ovaries and serum and to relate these to follicular development within the ovary. Comparison was made with a pool of normal/heterozygous females. In hpg females where lack of GnRH production results in the absence of gonadotropin synthesis, in FSHβ knockout (FSHβKO) females where disruption of the gene encoding FSHβ results in the absence of FSH production, and in FSH receptor knockout (FSHRKO) females which are unable to respond to circulating FSH, follicular development remains at the pre-antral stage in these three mutants. Only in the hpg females were common inhibin α subunit mRNA levels significantly lower than normal. In these three mutants, however, mRNA levels for both the βA and βB subunits were extremely low compared with normal mice. At the protein level, neither inhibin A nor B was detected in the serum of these three mutants; however inhibin B, albeit at very low levels, was detectable within the ovaries. These observations confirm a major role for FSH in the control of transcription of the βA and βB genes but suggest that the constitutive transcription of the alpha subunit is less dependent on FSH. In contrast, in LH receptor knockout (LuRKO) female mice inhibin βA subunit mRNA levels were similar to those measured in normal/heterozygous females but levels of inhibin α and βB subunit mRNAs were significantly higher than in the normal group. This was reflected in significantly higher inhibin B protein levels in ovaries and serum. An inability to respond to LH combined with high circulating levels of FSH leads to a high proportion of antral follicles in LuRKO females, with granulosa cells constituting the major cell type within the ovary. The high percentage of antral granulosa cells is likely to account for the significantly higher levels of inhibin B production in these ovaries.