Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Teruhiko Wakayama x
Clear All Modify Search
Free access

Hiroshi Ohta, Yuko Sakaide and Teruhiko Wakayama

We previously showed that increasing the cell number of host tetraploid (4n) embryos by aggregating multiple 4n embryos at two to four-cell stages can improve the birthrate of mice from embryonic stem cells (ES mice). In the present study, we assessed whether in vitro aged blastocysts (e.g., E4.5 or E5.5), where their cell number also increased with development, can be used as hosts for generating ES mice. As expected, the cell number of in vitro aged 4n blastocysts increased with development, i.e., 26.5±2.4, 49.6±8.4, and 84.9±20.9 cells for E3.5, E4.5, and E5.5 respectively. Three independent ES cell lines were injected into 4n aged blastocysts, and their developmental ability was compared with that of E3.5 4n blastocysts commonly used for this procedure. We found that the birthrate of ES mice derived from E4.5 blastocysts were comparable with those of mice generated from E3.5 blastocysts. On the other hand, the birthrates decreased when E5.5 blastocysts were used. These results suggest that not only the cell number but also developmental age is important for producing ES mice. We also discuss a comparison of the present findings with those of our previous study, where ES mice were generated using an aggregation method employing the same ES cell lines.

Free access

Chong Li, Eiji Mizutani, Tetsuo Ono and Teruhiko Wakayama

In mammals, ICSI is now a very important tool for both assisted reproductive technology and studying the mechanisms of fertilization. In the latter experiments, it is important to use spermatozoa that have lost their oocyte activation capacity but still retain their developmental potential. In this study, we used high-concentration NaOH to remove oocyte activation potential from spermatozoa, and examined whether normal offspring could be generated from these spermatozoa after ICSI. The spermatozoa were treated with different concentrations of NaOH (1–100 mM) for 1 h and then neutralized with equal amounts of same concentration of HCl. In 10 mM NaOH-treated spermatozoa, the cell membrane was broken and most of them failed to activate oocytes after their injection into the oocytes. However, these spermatozoa did not show strong damage, and after artificial activation with SrCl2, all of the zygotes were judged as normal by immunostaining to check the methylation status of histone H3 lysine 9, low chromosome damage by karyotype assay and staining with DNA double-strand breaks marker, γH2AX. Moreover, after transferring those embryos into recipient females, 106 (36.7%) live and healthy offspring were delivered, which is similar to the rate in the fresh control group. By contrast, spermatozoa treated with lower NaOH concentrations retained their oocyte activation capacity and those treated with higher concentrations lost their developmental potential. This suggests that 10 mM NaOH for 1 h is the best treatment to completely destroy the cell membrane and activation capacity of spermatozoa without injuring their developmental potential.

Free access

Yoshiaki Tanabe, Hiroki Kuwayama, Sayaka Wakayama, Hiroaki Nagatomo, Masatoshi Ooga, Satoshi Kamimura, Satoshi Kishigami and Teruhiko Wakayama

Recently, it has become possible to generate cloned mice using a somatic cell nucleus derived from not only F1 strains but also inbred strains. However, to date, all cloned mice have been generated using F1 mouse oocytes as the recipient cytoplasm. Here, we attempted to generate cloned mice from oocytes derived from the ICR-outbred mouse strain. Cumulus cell nuclei derived from BDF1 and ICR mouse strains were injected into enucleated oocytes of both strains to create four groups. Subsequently, the quality and developmental potential of the cloned embryos were examined. ICR oocytes were more susceptible to damage associated with nuclear injection than BDF1 oocytes, but their activation rate and several epigenetic markers of reconstructed cloned oocytes/embryos were similar to those of BDF1 oocytes. When cloned embryos were cultured for up to 4 days, those derived from ICR oocytes demonstrated a significantly decreased rate of development to the blastocyst stage, irrespective of the nuclear donor mouse strain. However, when cloned embryos derived from ICR oocytes were transferred to female recipients at the two-cell stage, healthy cloned offspring were obtained at a success rate similar to that using BDF1 oocytes. The ICR mouse strain is very popular for biological research and less expensive to establish than most other strains. Thus, the results of this study should promote the study of nuclear reprogramming not only by reducing the cost of experiments but also by allowing us to study the effect of oocyte cytoplasm by comparing it between strains.

Free access

Nguyen Van Thuan, Hong-Thuy Bui, Jin-Hoi Kim, Takafusa Hikichi, Sayaka Wakayama, Satoshi Kishigami, Eiji Mizutani and Teruhiko Wakayama

Since the birth of Cumulina, the first mouse clone produced by somatic cell nuclear transfer (SCNT), the success rate of cloning in mice has been extremely low compared with other species and most of the inbred mouse strains have never been cloned. Recently, our laboratory has found that treatment of SCNT mouse embryos with trichostatin A, a histone deacetylase inhibitor (HDACi), improved the full-term development of B6D2F1 mouse clones significantly. However, this was not effective for the inbred strains. Here, we show for the first time that by treating SCNT embryos with another HDACi, scriptaid, all the important inbred mouse strains can be cloned, such as C57BL/6, C3H/He, DBA/2, and 129/Sv. Moreover, the success of somatic nuclear reprogramming and cloning efficiency via nuclear transfer technique is clearly linked to the competent de novo synthesis of nascent mRNA in cloned mouse embryos.

Free access

Hong-Thuy Bui, Sayaka Wakayama, Eiji Mizutani, Keun-Kyu Park, Jin-Hoi Kim, Nguyen Van Thuan and Teruhiko Wakayama

Several lines of evidence indicate that the formation of a transcriptionally repressive state during the two-cell stage in the preimplantation mouse embryo is superimposed on the activation of the embryonic genome. However, it is difficult to determine the profile of newly synthesized (nascent) RNA during this phase because large amounts of maternal RNA accumulate in maturing oocytes to support early development. Using 5-bromouridine-5′-triphosphate labeling of RNA, we have verified that nascent RNA synthesis was repressed between the two-cell and four-cell transition in normally fertilized but not in parthenogenetic embryos. Moreover, this repression was contributed by sperm (male) chromatin, which we confirmed by studying androgenetic embryos. The source of factors responsible for repressing nascent RNA production was investigated using different stages of sperm development. Fertilization with immature round spermatids resulted in a lower level of transcriptional activity than with ICSI at the two-cell stage, and this was consistent with further repression at the four-cell stage in the ICSI group. Finally, study on DNA replication and chromatin remodeling was performed using labeled histones H3 and H4 to differentiate between male and female pronuclei. The combination of male and female chromatin appeared to decrease nascent RNA production in the fertilized embryo. This study indicates that paternal chromatin is important in the regulation of transcriptional activity during mouse preimplantation development and that this capacity is acquired during spermiogenesis.

Restricted access

Naoki Hirose, Sayaka Wakayama, Rei Inoue, Junya Ito, Masatoshi Ooga and Teruhiko Wakayama

Artificial oocyte activation is important for assisted reproductive technologies, such as fertilization with round spermatids (ROSI) or the production of cloned offspring by somatic cell nuclear transfer (SCNT). Recently, phospholipase Cζ (PLCζ)-cRNA was used to mimic the natural process of fertilization, but this method required the serial injection of PLCζ-cRNA and was found to cause damage to the manipulated oocytes. Here we tried to generate offspring derived from oocytes that were fertilized using round spermatid or somatic cell nuclear transfer with the co-injection of PLCζ-cRNA. After co-injecting round spermatids and 20 ng/µL of PLCζ-cRNA into the oocytes, most of them became activated, but the activation process was delayed by more than 1 h. With the co-injection method, the rate of blastocyst formation in ROSI embryos was higher (64%) compared with that of the serial injection method (55%). On another note, when SCNT was performed using the co-injection method, the cloned offspring were obtained with a higher success rate compared with the serial-injection method. However, in either ROSI or SCNT embryos, the birth rate of offspring via the co-injection method was similar to the Sr activation method. The epigenetic status of ROSI and SCNT zygotes that was examined showed no significant difference among all activation methods. The results indicated that although the PLCζ-cRNA co-injection method did not improve the production rate of offspring, this method simplified oocyte activation with less damage, and with accurate activation time in individual oocytes, it can be useful for the basic study of oocyte activation and development.

Free access

Hong-Thuy Bui, Nguyen Van Thuan, Teruhiko Wakayama and Takashi Miyano

We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3–S10) and serine 28 (H3–S28), and methylated at lysine 9 (H3–K9), but was not acetylated at lysine 9, 14 and 18 (H3–K9, H3–K14 and H3–K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3–S10 and H3–S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3–K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm.

Free access

Dasari Amarnath, Inchul Choi, Adel R Moawad, Teruhiko Wakayama and Keith H S Campbell

Inter-species somatic cell nuclear transfer (iSCNT) embryos usually fail to develop to the blastocyst stage and beyond due to incomplete reprogramming of donor cell. We evaluated whether using a karyoplast that would require less extensive reprogramming such as an embryonic blastomere or the meiotic spindle from metaphase II oocytes would provide additional insight into the development of iSCNT embryos. Our results showed that karyoplasts of embryonic or oocyte origin are no different from somatic cells; all iSCNT embryos, irrespective of karyoplast origin, were arrested during early development. We hypothesized that nuclear–cytoplasmic incompatibility could be another reason for failure of embryonic development from iSCNT. We used pig–mouse cytoplasmic hybrids as a model to address nuclear–cytoplasmic incompatibility in iSCNT embryos. Fertilized murine zygotes were reconstructed by fusing with porcine cytoplasts of varying cytoplasmic volumes (1/10 (small) and 1/5 (large) total volume of mouse zygote). The presence of pig cytoplasm significantly reduced the development of mouse zygotes to the blastocyst stage compared with control embryos at 120 h post-human chorionic gondotropin (41 vs 6 vs 94%, P<0.05; 1/10, 1/5, control respectively). While mitochondrial DNA copy numbers remained relatively unchanged, expression of several important genes namely Tfam, Polg, Polg2, Mfn2, Slc2a3 (Glut3), Slc2a1 (Glut1), Bcl2, Hspb1, Pou5f1 (Oct4), Nanog, Cdx2, Gata3, Tcfap2c, mt-Cox1 and mt-Cox2 was significantly reduced in cytoplasmic hybrids compared with control embryos. These results demonstrate that the presence of even a small amount of porcine cytoplasm is detrimental to murine embryo development and suggest that a range of factors are likely to contribute to the failure of inter-species nuclear transfer embryos.

Free access

Eiji Mizutani, Hiroshi Ohta, Satoshi Kishigami, Nguyen Van Thuan, Takafusa Hikichi, Sayaka Wakayama, Mitsuko Kosaka, Eimei Sato and Teruhiko Wakayama

The success rate is generally higher when cloning mice from embryonic stem (ES) cell nuclei than from somatic cell nuclei, suggesting that the embryonic nature or the undifferentiated state of the donor cell increases cloning efficiency. We assessed the developmental ability of cloned embryos derived from cultured neural stem cell (NSC) nuclei and compared the success rate with that of embryos cloned from other donor cells such as differentiated NSCs, cumulus cells, Sertoli cells and ES cells in the mouse. The transfer of two-cell cloned embryos derived from cultured NSC nuclei into surrogate mothers produced five live cloned mice. However, the success rate (0.5%) was higher in embryos cloned from cultured NSC nuclei than from differentiated NSCs (0%), but lower than that obtained by cloning mice from other cell nuclei (2.2–3.5%). Although the in vitro developmental potential to the two-cell stage of the cloned embryos derived from NSC nuclei (73%) was similar to that of the cloned embryos derived from other somatic cell nuclei (e.g., 85% in Sertoli cells and 75% in cumulus cells), the developmental rate to the morula–blastocyst stage was only 7%. This rate is remarkably lower than that produced from other somatic cells (e.g., 50% in Sertoli cells and 54% in cumulus cells). These results indicate that the undifferentiated state of neural cells does not enhance the cloning efficiency in mice and that the arrest point for in vitro development of cloned embryos depends on the donor cell type.

Free access

Hong-Thuy Bui, Nguyen Van Thuan, Satoshi Kishigami, Sayaka Wakayama, Takafusa Hikichi, Hiroshi Ohta, Eiji Mizutani, Emi Yamaoka, Teruhiko Wakayama and Takashi Miyano

Oocyte growth, maturation, and activation are complex processes that include transcription, heterochromatin formation, chromosome condensation and decondensation, two consecutive chromosome separations, and genomic imprinting. The objective of this study was to investigate changes in histone H3 modifications in relation to chromatin/chromosome morphology in pig oocytes during their growth, maturation, and activation. During the growth phase, histone H3 was acetylated at lysines 9, 14, and 18 (K9, K14, and K18), and became methylated at K9 when the follicles developed to the antral stage (oocyte diameter, 90 μm). When the fully grown oocytes (diameter, 120 μm) started their maturation, histone H3 became phosphorylated at serine 28 (S28) and then at S10, and deacetylated at K9, K14, and K18 as the chromosomes condensed. After the electroactivation of mature oocytes, histone H3 was reacetylated and dephosphorylated concomitant with the decondensation of the chromosomes. Histone H3 kinase activity increased over a similar time course to that of the phosphorylation of histone H3-S28 during oocyte maturation, and this activity decreased as histone H3-S10 and H3-S28 began to be dephosphorylated after the activation of the mature oocytes. These results suggest that the chromatin morphology of pig oocytes is regulated by the acetylation/deacetylation and the phosphorylation/dephosphorylation of histone H3, and the phosphorylation of histone H3 is the key event in meiotic chromosome condensation in oocytes. The inhibition of histone deacetylase with trichostatin A (TSA) inhibited the deacetylation and phosphorylation of histone H3, and chromosome condensation. Therefore, the deacetylation of histone H3 is thought to be required for its phosphorylation in meiosis. Although histone H3 acetylation and phosphorylation were reversible, the histone methylation that was established during the oocyte growth phase was stable throughout the course of oocyte maturation and activation.