Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Ting Gu x
Clear All Modify Search
Free access

Xuan-Tong Liu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Jia-Jun Yu, Wen-Jie Zhou, Chun-Jie Gu, Shao-Liang Yang, Yu-Kai Liu, Hui-Li Yang, Feng-Xuan Xu and Ming-Qing Li

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-β neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-β and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.

Restricted access

Zheng Ao, Ting Gu, Huaxing Zhao, Junsong Shi, Enqin Zheng, Gengyuan Cai, Zhenfang Wu and Zicong Li

Cloned pigs generated by the somatic cell transfer nuclear (SCNT) technique are highly valuable for agriculture, biomedicine, and life sciences. However, the neonatal mortality rate of cloned pigs is very high. The reasons causing the massive loss of cloned pigs during their neonatal ages are unclear. In the present study, we found that the neonatal death of cloned pigs was associated with aberrant purine metabolism, impaired renal morphology and function, and decreased hepatic Hprt1 expression. The downregulation of Hprt1, a key purine metabolism regulation gene, in the liver was responsible for the elevation of an important purine metabolite, uric acid, in the serum, causing abnormalities in kidney morphology and function and leading to death of neonatal cloned pigs. This study provided insights into the pathophysiological mechanisms underlying the neonatal death of clone pigs, and results will help improve their survival rate.