Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Vikki M Abrahams x
Clear All Modify Search
Free access

Priyadarshini Pantham, Vikki M Abrahams and Lawrence W Chamley


Anti-phospholipid antibodies (aPL) are autoantibodies that are associated with thrombosis and a range of pregnancy complications including recurrent pregnancy loss and pre-eclampsia. The three clinically relevant, well-characterized aPL are anti-cardiolipin antibodies, lupus anticoagulant and anti-beta-2-glycoprotein I (β2GPI) antibodies. aPL do not bind directly to phospholipids but instead bind to a plasma-binding ‘cofactor’. The most extensively studied cofactor is β2GPI, whose role in pregnancy is not fully elucidated. Although the pathogenicity of aPL in recurrent pregnancy loss is well established in humans and animal models, the association of aPL with infertility does not appear to be causative. aPL may exert their detrimental effects during pregnancy by directly binding trophoblast cells of the placenta, altering trophoblast signalling, proliferation, invasion and secretion of hormones and cytokines, and by increasing apoptosis. Heparin is commonly used to treat pregnant women with aPL; however, as thrombotic events do not occur in the placentae of all women with aPL, it may exert a protective effect by preventing the binding of aPL to β2GPI or by acting through non-thrombotic pathways. The aim of this review is to present evidence summarizing the current understanding of this field.

Restricted access

Masaru Negi, Melissa J Mulla, Christina S Han and Vikki M Abrahams

Pre-gestational diabetes is a risk factor for preeclampsia, a condition associated with inflammatory markers, a dysregulated angiogenic profile, and impaired placentation. Using an in vitro model, we previously reported that hyperglycemic levels of glucose induced a pro-inflammatory (IL-1β, IL-8, RANTES, GRO-α), anti-angiogenic (sFlt-1) and anti-migratory profile in a human trophoblast cell line. The IL-1β response to excess glucose was mediated by uric acid-induced activation of the NLRP3 inflammasome. Allopurinol is a xanthine oxidase inhibitor that inhibits uric acid and reactive oxygen species (ROS) production. Thus, we sought to test the effects of allopurinol on the IL-1β and other inflammatory, angiogenic and migratory responses that are triggered in the trophoblast by excess glucose. Under excess glucose conditions, allopurinol significantly inhibited trophoblast secretion of inflammatory IL-1β; caspase-1 activity; IL-8; RANTES; and GRO-α. Allopurinol also significantly inhibited excess glucose-induced trophoblast secretion of anti-angiogenic sFlt-1. The presence of IL1Ra significantly inhibited excess glucose-induced trophoblast IL-8 and GRO-α secretion but had no effect on RANTES or sFlt-1. Conversely, DPI, a ROS inhibitor, significantly inhibited excess glucose-induced trophoblast GRO-α and sFlt-1 secretion, but had no effect on IL-8 or RANTES. Together, our findings indicate that the xanthine oxidase inhibitor allopurinol inhibited excess glucose-induced trophoblast IL-1β secretion. Additionally, through its inhibition of both IL-1β and ROS production by the trophoblast, allopurinol reduced the additional pro-inflammatory and anti-angiogenic responses to excess glucose. Thus, allopurinol may be a candidate medication to prevent placental dysfunction and adverse pregnancy outcomes, such as preeclampsia, in pregnant women with diabetes.