Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Wenqian Xiong x
Clear All Modify Search
Open access

Wenqian Xiong, Ling Zhang, Lan Yu, Wei Xie, Yicun Man, Yao Xiong, Hengwei Liu and Yi Liu

Endometriosis is an estrogen-dependent disease that involves the adhesion, invasion, and angiogenesis of endometrial tissues outside of the uterine cavity. We hypothesized that a link exists between estrogen and beta-catenin (β-catenin) signaling in the pathogenesis of endometriosis. Human endometrial stromal cells (HESCs) were separated from eutopic endometrial tissues that were obtained from patients with endometriosis. β-catenin expression and cells invasiveness ability were up-regulated by 17β-estradiol (E2) in an estrogen receptor (ESR)-dependent manner, whereas β-catenin siRNA abrogated this phenomenon. Moreover, co-immunoprecipitation and dual immunofluorescence studies confirmed ESR1, β-catenin, and lymphoid enhancer factor 1/T cell factor 3 co-localization in the nucleus in HESCs after E2 treatment. To determine the role of β-catenin signaling in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium from endometriosis patients into ovariectomized severe combined immunodeficiency mice. The implantation of the endometrium was suppressed by β-catenin siRNA. Collectively, studies regarding β-catenin signaling are critical for improving our understanding of the pathogenesis of estrogen-induced endometriosis, which can translate into the development of treatments and therapeutic strategies for endometriosis.

Free access

Hengwei Liu, Zhibing Zhang, Wenqian Xiong, Ling Zhang, Yao Xiong, Na Li, Haitang He, Yu Du and Yi Liu

Endometriosis is a benign gynecological disease that shares some characteristics with malignancy like migration and invasion. It has been reported that both hypoxia-inducible factor-1α (HIF-1α) and autophagy were upregulated in ectopic endometrium of patients with ovarian endometriosis. However, the crosstalk between HIF-1α and autophagy in the pathogenesis of endometriosis remains to be clarified. Accordingly, we investigated whether autophagy was regulated by HIF-1α, as well as whether the effect of HIF-1α on cell migration and invasion is mediated through autophagy upregulation. Here, we found that ectopic endometrium from patients with endometriosis highly expressed HIF-1α and autophagy-related protein LC3. In cultured human endometrial stromal cells (HESCs), autophagy was induced by hypoxia in a time-dependent manner and autophagy activation was dependent on HIF-1α. In addition, migration and invasion ability of HESCs were enhanced by hypoxia treatment, whereas knockdown of HIF-1α attenuated this effect. Furthermore, inhibiting autophagy with specific inhibitors and Beclin1 siRNA attenuated hypoxia triggered migration and invasion of HESCs. Taken together, these results suggest that HIF-1α promotes HESCs invasion and metastasis by upregulating autophagy. Thus, autophagy may be involved in the pathogenesis of endometriosis and inhibition of autophagy might be a novel therapeutic approach to the treatment of endometriosis.

Restricted access

Yu Du, Zhibing Zhang, Wenqian Xiong, Na Li, Hengwei Liu, Haitang He, Qi Li, Yi Liu and Ling Zhang

Endometriosis is an estrogen-dependent benign gynecological disease that shares some common features of malignancy. Epithelial-mesenchymal transition (EMT) has been recognized as a core mechanism of endometriosis. MALAT1 is widely known as EMT promoter, while miR200 family members (miR200s) are considered as EMT inhibitors. Previous studies have reported that MALAT1 up-regulation and miR200s down-regulation are observed in endometriosis. MiR200c has been regarded as the strongest member of miR200s to interact with MALAT1. However, whether MALAT1/miR200c regulates EMT remains largely unclear. In this study, the roles of miR200s and MALAT1 in ectopic endometrium were investigated. Additionally, the effects of E2 on EMT and MALAT1/miR200s were examined in both EECs and Ishikawa cells. Notably, E2 could up-regulate MALAT1 and down-regulate miR200s expression levels, and induce EMT in EECs and Ishikawa cells. PHTPP, an ERβ antagonist, could reverse the effect of E2. Overexpression of miR200c and knockdown of MALAT1 significantly inhibited E2-mediated EMT, suggesting that both miR200c and MALAT1 are involved in the E2-induced EMT process in endometriosis. In addition, a reciprocal inhibition was found between miR200s and MALAT1. Therefore, the role of MALAT1/miR200c in EMT is influenced by the presence of estrogen during endometriosis development.