Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Xiang Xiao x
Clear All Modify Search
Restricted access

Xiang Xiao, Yue Yang, Baiping Mao, C. Yan Cheng and Ya Ni

SRC family kinases (SFKs) are known regulators of multiple cellular events, including cell movement, differentiation, proliferation, survival, and apoptosis. SFKs are expressed virtually by all mammalian cells. They are non-receptor protein kinases that phosphorylate a variety of cellular proteins on tyrosine, leading to activation of protein targets in response to environmental stimuli. Among SFKs, SRC, YES, and FYN are the ubiquitously expressed and best studied members. In fact, SRC, the prototypical SFK, was the first tyrosine kinase identified in mammalian cells. Studies have shown that SFKs are regulators of cell junctions, and function in endocytosis and membrane trafficking to regulate junction restructuring events. Herein, we briefly summarize recent findings in the field regarding the role of SFKs in the testis in regulating spermatogenesis, particularly in Sertoli-Sertoli and Sertoli-germ cell adhesion. While it is almost 50 years since the identification of the oncogene v-Src encoded by Rous sarcoma transforming virus, the understanding of SFK involvement during spermatogenesis in the testis remains far behind that in other epithelia and tissues. The goal of this review aims to bridge this gap.

Free access

Li-Juan Xiao, Jin-Xiang Yuan, Xin-Xin Song, Yin-Chuan Li, Zhao-Yuan Hu and Yi-Xun Liu

Stanniocalcin-1 (STC-1) is a recently discovered polypeptide hormone, while stanniocalcin-2 (STC-2) is a subsequently identified homologue of stanniocalcin-1. Although previous studies have shown that both STC-1 and -2 are involved in various physiological processes, such as ion transport, reproduction and development, their expression in the uterus and roles in implantation and early pregnancy are unclear. Here we have investigated the expression and regulation of both STC-1 and STC-2 in rat uterus during early pregnancy under various physiological conditions. We show that only basal levels of STC-1 and STC-2 mRNA were detected in the uterus from day one (D1) to day five (D5) of pregnancy. STC-2 immunostaining was gradually increased in the glandular epithelium from day two (D2), with a peak occurring on D5. High levels of both STC-1 and STC-2 mRNA were observed in the stoma cells at the implantation site on day six (D6) of pregnancy, whereas their immunostaining signals were also significant in the luminal epithelium. Basal levels of both STC-1 and STC-2 mRNA and STC-1 immunostaining were detected in the uterus with delayed implantation. After the delayed implantation was terminated by estrogen treatment, both STC-1 and STC-2 mRNA signals were significantly induced in the stroma underlying the luminal epithelium at the implantation site, and STC-2 immunostaining was also observed in the luminal epithelium surrounding the implanting blastocyst. Embryo transfer experiments further confirmed that STC-1 and STC-2 expression at the implantation sites was induced by the implanting blastocyst. Both STC-1 mRNA and immunostaining were seen in the decidualized cells from day seven (D7) to day nine (D9) of pregnancy. STC-2 mRNA was also found in the whole decidua from D7 to D9 of pregnancy; STC-2 protein, however, was strictly localized to the primary deciduas on D7 and D8, with a weak expression in the whole deciduas on D9. Consistent with the normal pregnancy process, strong STC-1 and STC-2 mRNA signals were detected in the decidualized cells under artificial decidualization, whereas only basal levels of STC-1 mRNA and immunostaining were observed in the control horn. These data suggest, for the first time, that STC-1 together with STC-2 may play important roles in the processes of implantation and decidualization in the rat.

Free access

Li-Juan Xiao, Jin-Xiang Yuan, Yin-Chuan Li, Rui Wang, Zhao-Yuan Hu and Yi-Xun Liu

The extracellular Ca2+-sensing receptor (CaR) is a member of the superfamily of G protein-coupled receptors (GPCRs). It is an important mediator of a wide range of Ca2+-dependent physiological responses in various tissues. In reproductive tissues it has been reported to play a significant role in promoting or maintaining placentation. Meanwhile, another Ca2+ regulated gene stanniocalcin-1 (STC-1) has been documented to be involved in decidualization and uterine remodelling. The phenomenon that CaR mediates STC-1’s transcription responding to extracellular calcium in fish urges us to suppose that CaR, like STC-1, may also play a role in implantation and decidualization. To resolve this conjecture, we have examined the expression and hormonal regulation of the CaR gene in rat uterus during peri-implantation period.

CaR mRNA was expressed at a moderate level in the luminal epithelium of the early stage of pregnancy (from day 1 to day 3). From day 2–3 it began to be expressed more strongly in the stromal cells immediately underneath the luminal epithelium, but decreased to a basal level on day 4. From day 6 to day 9 continuously, both CaR mRNA and protein were highly expressed in the primary decidua. Expression of CaR mRNA and protein in these cells was also observed when a delayed implantation was terminated by estrogen treatment to allow the embryo implantation. In contrast, only basal level expression of the molecules was detected in the cells of animals subjected to a normal-delayed implantation or the pseudopregnant condition.

Embryo transplantation experiment confirmed that CaR expression at the implantation site was induced by the implanting blastocyst. Consistent with the normal pregnant process, CaR mRNA and protein in the cells were also induced by an artificial decidualization procedure. Further experiments demonstrated that treatment of the ovariectomized rat with estrogen or/and progesterone stimulated a high level expression of CaR mRNA in the uterine epithelial and glandular epithelium. In conclusion, CaR was specifically induced during the processes of implantation and subsequent decidualization and may play a role in these processes.

Free access

Meng-Ling Liu, Jing-Lei Wang, Jie Wei, Lin-Lin Xu, Mei Yu, Xiao-Mei Liu, Wen-Li Ruan and Jia-Xiang Chen

Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis.