The micromolar calcium-activated neutral protease gene (CAPN1) is a physiological candidate gene for sperm motility. However, the molecular mechanisms involved in regulating the expression of the CAPN1 gene in bulls remain unknown. In this study, we investigated the expression pattern of CAPN1 in testis, epididymis, and sperm at the RNA and protein levels by qRT-PCR, western blot, immunohistochemistry, and immunofluorescence assay. Results revealed that the expression of CAPN1 levels was higher in the sperm head compared with that in other tissues. Moreover, we identified a novel single-nucleotide polymorphism (g.-1256 A>C, ss 1917715340) in the noncanonical core promoter of the CAPN1 gene between base g.-1306 and g.-1012. Additionally, we observed greater sperm motility in bulls with the genotype CC than in those with the genotype AA (P<0.01), indicating that different genotypes were associated with the bovine semen trait. Furthermore, a higher fluorescence intensity of the C allele than that of the A allele at g. -1256 A>C was revealed by transient transfection in MLTC-1 cells and luciferase report assay. Finally, CAPN1 was highly expressed in the spermatozoa with the CC genotype compared with that with the AA genotype by qRT-PCR. This study is the first report on genetic variant g.-1256 A>C in the promoter region of CAPN1 gene association with the semen quality of Chinese Holstein bulls by influencing its expression. g.-1256 A>C can be a functional molecular marker in cattle breeding.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: Xiaohui Yang x
- Refine by Access: All content x
Xiaohui Cui, Yan Sun, Xiuge Wang, Chunhong Yang, Zhihua Ju, Qiang Jiang, Yan Zhang, Jinming Huang, Jifeng Zhong, Miao Yin, and Changfa Wang
Qiuling Jie, Lijun Chen, Jiangying Liang, Xiaohui Yang, Fei Sun, and Yanlin Ma
In brief
Preeclampsia is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes, but the mechanisms underlying the development of preeclampsia are not fully understood. This study shows that ETV4 plays an essential role in the proliferation, invasion, and migration of trophoblast cells by regulating MMP-2 and MMP-9 and is involved in the pathogenesis of preeclampsia.
Abstract
Preeclampsia (PE) is a pregnancy complication that can lead to severe adverse maternal and fetal outcomes. However, the mechanisms underlying the development of PE are not fully understood. ETS Variant Transcription Factor 4 (ETV4) plays an important role in cell proliferation, migration, and invasion. In this study, we aimed to explore the potential function of ETV4 in placental trophoblast cells. We analyzed the expression and location of ETV4 in PE and uncomplicated placental tissues using RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence staining. The results showed that both the mRNA and protein levels of ETV4 were markedly decreased in PE placental tissues compared with placental tissues from women with uncomplicated pregnancies (P < 0.05). Then, the effects of ETV4 on HTR-8/SVneo and Bewo cell proliferation, migration, and invasion were evaluated by MTT, 5-ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays, respectively. The results showed that ETV4 knockdown inhibited both HTR-8/SVneo and Bewo cell proliferation, migration, and invasion (P < 0.05). Conversely, overexpression of ETV4 promoted both HTR-8/SVneo and Bewo cell proliferation, migration, and invasion (P < 0.05). We then measured the expression of MMP-2 and MMP-9 in HTR8/SVneo cells. We found that ETV4 knockdown decreased the mRNA and protein expression of MMP-2 and MMP-9, while ETV4 overexpression increased MMP-2 and MMP-9 mRNA and protein expression (P < 0.05). In conclusion, ETV4 plays an essential role in the proliferation, invasion, and migration of trophoblast cells by regulating MMP-2 and MMP-9. Our findings provide novel insight into the mechanisms underlying the occurrence of PE.