Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Xiaowei Yan x
  • All content x
Clear All Modify Search
Free access

Kang Shan, Ma Xiao-Wei, Wang Na, Zhang Xiu-Feng, Wen Deng-Gui, Guo Wei, Zhang Zheng-Mao, and Li Yan

Endometriosis, one of the most frequent diseases in gynecology, is a benign but invasive and metastatic disease. The altered expression of E-cadherin may play an important role in developing endometriosis. In this paper, we discuss the association of three single nucleotide polymorphisms (SNPs) on the E-cadherin gene and risk of endometriosis. We examined the genotype frequency of three polymorphisms in 152 endometriosis patients and 189 control women. There was a significant difference in the frequency of the E-cadherin 3′-UTR C → T genotypes between endometriosis and controls (P = 0.01). The frequency of the C allele in patients (71.1%) was significantly higher than in the controls (63.8%; P = 0.04). When compared with the T/T + T/C genotypes, the C/C genotype had a significantly increased susceptibility to endometriosis, with an adjusted odds ratio of 1.79 (95% confidence interval = 1.17–2.76). No significant difference was found between endometriosis and control women on two polymorphisms (−160 C → A, −347 G → GA) at the gene promoter region of E-cadherin. The −160 C → A and −347 G → GA polymorphisms displayed linkage disequilibrium (D′ = 0.999). The −160 A/−347 GA haplotype was only detected in endometriosis patients (2%). These data show a relation between the E-cadherin 3′-UTR C → T polymorphism, the −160 A/−347 GA haplotype of two promoter polymorphisms and risk of endometriosis, suggesting a potential role in endometriosis development, at least in North Chinese women.

Free access

Qian Chen, Yong Fan, Xiaowei Zhou, Zheng Yan, Yanping Kuang, Aijun Zhang, and Chen Xu

Some studies have demonstrated that the implantation rate of fresh transfer cycles is lower in the gonadotropin-releasing hormone antagonist (GnRH-ant) protocol than in the GnRH agonist (GnRH-a) protocol during in vitro fertilization (IVF). This effect may be related to endometrial receptivity. However, the mechanisms are unclear. Here, endometrial tissues obtained from the mid-secretory phase of patients treated with GnRH-a or GnRH-ant protocols and from patients on their natural cycle were assessed. Endometrial expression of B-type creatine kinase (CKB), which plays important roles in the implantation phase, was significantly reduced in the GnRH-ant group. At the same time, expression of the endometrial receptivity marker HOXA10 was considerably reduced in the GnRH-ant group. GnRH-ant exposure in endometrial epithelial cells (EECs) in vitro decreased CKB expression and ATP generation and blocked polymerization of actin. Furthermore, in vitro GnRH-ant-exposed Ishikawa cells showed enhanced F-actin depolymerization, and these effects were rescued by CKB overexpression. Similar effects were observed after CKB knockdown, and these effects were rescued by CKB overexpression. Moreover, cell migration was decreased in CKB-knockdown Ishikawa cells compared with that in control cells, and this effect was also rescued by CKB overexpression. Overall, these findings showed that GnRH-ant affected CKB expression in EECs, resulting in cytoskeletal damage and migration failure. These results provide insight into the roles and molecular mechanisms of GnRH-ant treatment in the endometrium.

Open access

Xiao Han, Cong Zhang, Xiangping Ma, Xiaowei Yan, Bohui Xiong, Wei Shen, Shen Yin, Hongfu Zhang, Qingyuan Sun, and Yong Zhao

Muscarinic acetylcholine receptor (mAChR) antagonists have been reported to decrease male fertility; however, the roles of mAChRs in spermatogenesis and the underlying mechanisms are not understood yet. During spermatogenesis, extensive remodeling between Sertoli cells and/or germ cells interfaces takes place to accommodate the transport of developing germ cells across the blood-testis barrier (BTB) and adluminal compartment. The cell–cell junctions play a vital role in the spermatogenesis process. This study used ICR male mice and spermatogonial cells (C18-4) and Sertoli cells (TM-4). shRNA of control or M5 gene was injected into 5-week-old ICR mice testes. Ten days post-viral grafting, mice were deeply anesthetized with pentobarbital and the testes were collected. One testicle was fresh frozen for RNA-seq analysis or Western blotting (WB). The second testicle was fixed for immunofluorescence staining (IHF). C18-4 or TM-4 cells were treated with shRNA of control or M5 gene. Then, the cells were collected for RNA-seq analysis, WB, or IHF. Knockdown of mAChR M5 disrupted mouse spermatogenesis and damaged the actin-based cytoskeleton and many types of junction proteins in both Sertoli cells and germ cells. M5 knockdown decreased Phldb2 expression in both germ cells and Sertoli cells which suggested that Phldb2 may be involved in cytoskeleton and cell–cell junction formation to regulate spermatogenesis. Our investigation has elucidated a novel role for mAChR M5 in the regulation of spermatogenesis through the interactions of Phldb2 and cell–cell junctions. M5 may be an attractive future therapeutic target in the treatment of male reproductive disorders.

Open access

Yu-chen Zhang, Xiao-li Qin, Xiao-ling Ma, Hui-qin Mo, Shi Qin, Cheng-xi Zhang, Xiao-wei Wei, Xue-qing Liu, Yan Zhang, Fu-ju Tian, and Yi Lin

Preeclampsia is a gestational hypertensive disease; however, preeclampsia remains poorly understood. Bioinformatics analysis was applied to find novel genes involved in the pathogenesis of preeclampsia and identified CLDN1 as one of the most differentially expressed genes when comparing patients with preeclampsia and healthy controls. The results of the qRT-PCR, Western blotting and immunohistochemistry experiments demonstrated that CLDN1 was significantly downregulated in the chorionic villi in samples from patients with preeclampsia. Furthermore, knockdown of CLDN1 in HTR-8/SVneo cells resulted in the inhibition of proliferation and induction of apoptosis, and overexpression of CLDN1 reversed these effects. In addition, RNA-seq assays demonstrated that the gene BIRC3 is potentially downstream of CLDN1 and is involved in the regulation of apoptosis. Knockdown of CLDN1 confirmed that the expression level of BIRC3 was obviously decreased and was associated with a significant increase in cleaved PARP. Interestingly, the apoptotic effect in CLDN1 knockdown cells was rescued after BIRC3 overexpression. Overall, these results indicate that a decrease in CLDN1 inhibits BIRC3 expression and increases cleaved PARP levels thus participating in the pathogenesis of preeclampsia.