Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Xiaoyan Huang x
Clear All Modify Search
Free access

Xin Huang, Cuifang Hao, Xiaofang Shen, Xiaoyan Liu, Yinghua Shan, Yuhua Zhang and Lili Chen

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss. In this microenvironment, the cross talk between an oocyte and the surrounding cumulus cells (CCs) is critical for achieving oocyte competence. The aim of our study was to investigate the gene expression profiles of CCs obtained from PCOS patients undergoing IVF cycles in terms of oocyte maturation by using human Genome U133 Plus 2.0 microarrays. A total of 59 genes were differentially expressed in two CC groups. Most of these genes were identified to be involved in one or more of the following pathways: receptor interactions, calcium signaling, metabolism and biosynthesis, focal adhesion, melanogenesis, leukocyte transendothelial migration, Wnt signaling, and type 2 diabetes mellitus. According to the different expression levels in the microarrays and their putative functions, six differentially expressed genes (LHCGR, ANGPTL1, TNIK, GRIN2A, SFRP4, and SOCS3) were selected and analyzed by quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Moreover, the molecular signatures (LHCGR, TNIK, and SOCS3) were associated with developmental potential from embryo to blastocyst stage and were proposed as biomarkers of embryo viability in PCOS patients. Our results may be clinically important as they offer a new potential strategy for competent oocyte/embryo selection in PCOS patients.

Free access

Bo Zheng, Jun Yu, Yueshuai Guo, Tingting Gao, Cong Shen, Xi Zhang, Hong Li and Xiaoyan Huang

The cellular nucleic acid-binding protein (CNBP), also known as zinc finger protein 9, is a highly conserved zinc finger protein that is strikingly conserved among vertebrates. Data collected from lower vertebrates showed that CNBP is expressed at high levels and distributed in the testes during spermatogenesis. However, the location and function of CNBP in mammalian testes are not well known. Here, by neonatal mouse testis culture and spermatogonial stem cells (SSC) culture methods, we studied the effect of CNBP knockdown on neonatal testicular development. Our results revealed that CNBP was mainly located in the early germ cells and Sertoli cells. Knockdown of CNBP using morpholino in neonatal testis culture caused disruption of seminiferous tubules, mislocation of Sertoli cells and loss of germ cells, which were associated with the aberrant Wnt/β-catenin pathway activation. However, knockdown of CNBP in SSC culture did not affect the survival of germ cells. In conclusion, our study suggests that CNBP could maintain testicular development by inhibiting the Wnt/β-catenin pathway, particularly by influencing Sertoli cells.

Free access

Jian Shen, Wen Chen, Binbin Shao, Yujuan Qi, Zhengrong Xia, Fuqiang Wang, Lei Wang, Xuejiang Guo, Xiaoyan Huang and Jiahao Sha

Spermiogenesis is a complex process of terminal differentiation that is necessary to produce mature sperm. Using protein expression profiles of mouse and human testes generated from our previous studies, we chose to examine the actions of lamin A/C in the current investigation. Lamin A and lamin C are isoforms of the A-type lamins that are encoded by the LMNA gene. Our results showed that lamin A/C was expressed in the mouse testis throughout the different stages of spermatogenesis and in mature sperm. Lamin A/C was also expressed in mouse haploid germ cells and was found to be localized to the acroplaxome in spermiogenesis, from round spermatids until mature spermatozoa. The decreased expression of lamin A/C following injections of siRNA against Lmna caused a significant increase in caudal sperm head abnormalities when compared with negative controls. These abnormalities were characterized by increased fragmentation of the acrosome and abnormal vesicles, which failed to fuse to the developing acrosome. This fragmentation also caused significant alterations in nuclear elongation and acrosome formation. Furthermore, we found that lamin A/C interacted with the microtubule plus-end-tracking protein CLIP170. These results suggest that lamin A/C is critical for proper structural and functional development of the sperm acrosome and head shape.

Free access

Jin Huang, Hao Qin, Yihua Yang, Xiaoyan Chen, Jiamiao Zhang, Susan Laird, Chi Chiu Wang, Ting Fung Chan and Tin Chiu Li

The endometrium becomes receptive to the embryo only in the mid-luteal phase, but not in the other stages of the menstrual cycle. Endometrial factors play an important role in implantation. Women with recurrent miscarriage and recurrent implantation failure have both been reported to have altered expression of receptivity markers during the window of implantation. We aimed to compare the gene expression profiles of the endometrium in the window of implantation among women with unexplained recurrent implantation failures (RIF) and unexplained recurrent miscarriages (RM) by RNA sequencing (RNA-Seq). In total 20 patients (9 RIF and 11 RM) were recruited. In addition 4 fertile subjects were included as reference. Endometrium samples were precisely timed on the 7th day after luteal hormone surge (LH + 7). All the 24 endometrium samples were extracted for total RNA. The transcriptome was determined by RNA-Seq in the first 14 RNA samples (5 RIF, 6 RM and 3 fertile). Differentially expressed genes between RM and RIF were validated by quantitative real-time PCR (qPCR) in all 24 RNA samples (9 RIF, 11 RM and 4 fertile). Transcriptomic profiles of RM and RIF, but not control samples, were separated from each other by principle component analysis (PCA) and support vector machine (SVM). Complementary and coagulation cascades pathway was significantly up-regulated in RIF while down-regulated in RM. Differentially expressed genes C3, C4, C4BP, DAF, DF and SERPING1 in complement and coagulation cascade pathway between RM and RIF were further validated by qPCR. This study compared endometrial transcriptome among patients with RIF and RM in the window of implantation; it identified differential molecular pathways in endometrium between RIF and RM, which potentially affect the implantation process.

Free access

Xiaoyan Huang, Jun Zhang, Li Lu, Lanlan Yin, Min Xu, Youqun Wang, Zuomin Zhou and Jiahao Sha

Identification of genes specifically expressed in adult and fetal testis is important in furthering our understanding of testis development and function. In this study, a novel human transcript, designated human testis cAMP-responsive element-binding protein (htCREB), was identified by hybridization of adult and fetal human testis cDNA probes with a human cDNA microarray containing 9216 clones. The htCREB transcript (GenBank Accession no. AY347527) was expressed at 2.35-fold higher levels in adult human testes than in fetal testes. Sequence and ntBLAST analyses against the human genome database indicated that htCREB was a novel splice variant of human CREB. RT-PCR-based tissue distribution experiments demonstrated that the htCREB transcript was highly expressed in adult human testis and in healthy sperm, but not in testes from patients with Sertoli cell-only syndrome. Taken together, these results suggest that the htCREB transcript is chiefly expressed in germ cells and is most likely involved in spermatogenesis.