Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Xin He x
Clear All Modify Search
Free access

Zhiwei Niu, Liming Zheng, Siyu Wu, Hailong Mu, Fanglin Ma, Wencong Song, Haijing Zhu, Jiang Wu, Xin He and Jinlian Hua

Spermatogonia stem cells (SSCs), also named the male germline stem cells (mGSCs), which is located at the base of the seminiferous tubules of testis, is the basis for generating sperm steadily in male animals. Currently, there are some preliminary study on the self-renewal and differentiation of SSCs, but further mechanism, especially in large animals, has not been clearly understood. Ras/ERK1/2 pathway is widely distributed in multiple cells in vivo. It plays an important role in cell proliferation, differentiation and so on. However, the study on the function for the self-renewal of dairy goats SSCs has not been investigated. In this study, the dairy goat SSCs characterization were evaluated by semi-RT-PCR, alkaline phosphatase (AP) staining, and immunofluorescence staining. Then, Ras/ERK1/2 pathway was blocked by specific MEK1/2 inhibitor PD0325901. We analyzed the proliferation by cell number, cell growth curve, Brdu incorporation assay, and cell cycle analysis. The results showed that the proliferation was significantly inhibited by PD0325901. Cell apoptosis induced by blocking the Ras/ERK1/2 pathway was analyzed by TUNEL. The expression of ETV5 and BCL6B, the downstream gene of Ras/ERK1/2 pathway, was downregulated. This study suggest that the Ras/ERK1/2 pathway plays a critical role in maintaining the self-renewal of dairy goat SSCs via regulation of ETV5 and BCL6B. This study laid a foundation for insights into the mechanism of SSCs self-renewal comprehensively.

Free access

Dong Han, Xin-Yan Cao, Hui-Li Wang, Jing-Jing Li, Yan-Bo Wang and Jing-He Tan

Although studies suggest that the low competence of oocytes from prepubertal animals is due to their insufficient cytoplasmic maturation and that FSH improves oocyte maturation possibly by retarding meiotic progression and allowing more time for cytoplasmic maturation, the mechanisms by which puberty and gonadotropins regulate meiotic progression require additional detailed studies. For the first time, we observed that while meiotic progression was significantly slower, the maturation-promoting factor (MPF) activity of oocytes was significantly higher in prepubertal than in adult mice. To resolve this contradiction, we specified the molecules regulating the MPF activity and their localization during oocyte maturation in prepubertal and adult mice primed with or without gonadotropins. Our tests using corresponding enzyme regulators suggested that while activities of protein kinase A were unaffected, the activity of adenylate cyclase (ADCY) and phosphodiesterase increased while cell division cycle 2 homolog A (CDC2A) decreased significantly after puberty. While most of the adult oocytes had CDC2A protein concentrated in the germinal vesicle (GV) region, the majority of prepubertal oocytes showed no nuclear concentration of CDC2A. Maximally priming mice with equine chorionic gonadotropin brought the above parameters of prepubertal oocytes close to those in adult oocytes. Together, the results suggest that puberty and gonadotropin control oocyte meiotic progression mainly by regulating the ADCY activity and the concentration of the activated MPF toward the GV region.

Free access

Xingji You, Zixi Chen, Huina Zhao, Chen Xu, Weina Liu, Qianqian Sun, Ping He, Hang Gu and Xin Ni

Recent evidence suggests that uterine activation for labor is associated with inflammation within uterine tissues. Hydrogen sulfide (H2S) plays a critical role in inflammatory responses in various tissues. Our previous study has shown that human myometrium produces H2S via its generating enzymes cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS) during pregnancy. We therefore explored whether H2S plays a role in the maintenance of uterine quiescence during pregnancy. Human myometrial biopsies were obtained from pregnant women at term. Uterine smooth muscle cells (UMSCs) isolated from myometrial tissues were treated with various reagents including H2S. The protein expression of CSE, CBS and contraction-associated proteins (CAPs) including connexin 43, oxytocin receptor and prostaglandin F receptor determined by Western blot. The levels of cytokines were measured by ELISA. The results showed that CSE and CBS expression inversely correlated to the levels of CAPs and activated NF-κB in pregnant myometrial tissues. H2S inhibited the expression of CAPs, NF-κB activation and the production of interleukin (IL)-1β, IL-6 and tumor necrosis factor α (TNFα) in cultured USMCs. IL-1β treatment reversed H2S inhibition of CAPs. Knockdown of CSE and CBS prevented H2S suppression of inflammation. H2S modulation of inflammation is through KATP channels and phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) signaling pathways. H2S activation of PI3K and ERK signaling is dependent on KATP channels. Our data suggest that H2S suppresses the expression of CAPs via inhibition of inflammation in myometrium. Endogenous H2S is one of the key factors in maintenance of uterine quiescence during pregnancy.

Restricted access

Xue-Ying Zhang, Yi-Meng Xiong, Ya-Jing Tan, Li Wang, Rong Li, Yong Zhang, Xin-Mei Liu, Xian-Hua Lin, Li Jin, Yu-Ting Hu, Zhen-Hua Tang, Zheng-Mu Wu, Feng-Hua Yin, Zheng-Quan Wang, Ye Xiao, Jian-Zhong Sheng and He-Feng Huang

Fertilization failure often occurs during in vitro fertilization (IVF) cycles despite apparently normal sperm and oocytes. Accumulating evidence suggests that mitochondria play crucial roles in the regulation of sperm function and male fertility. 3-Nitrophthalic acid (3-NPA) can induce oxidative stress in mitochondria, and melatonin, as an antioxidant, can improve mitochondrial function by reducing mitochondrial oxidative stress. The role of sperm mitochondrial dysfunction in fertilization failure during IVF is unclear. The present study revealed that spermatozoa with low, or poor, fertilization rates had swollen mitochondria, increased mitochondria-derived ROS, and attenuated mitochondrial respiratory capacity. 3-NPA treatment enhanced mitochondrial dysfunction in sperm. Spermatozoa with poor fertilization rates, and spermatozoa treated with 3-NPA, had reduced penetration ability. The concentration of melatonin was decreased in semen samples with low and poor fertilization rates. Melatonin, not only decreased excessive mitochondria-derived ROS, but also ‘rescued’ the reduced penetration capacity of spermatozoa treated with 3-NPA. Taken together, the study suggested that mitochondria-derived ROS and mitochondrial respiratory capacity are independent bio-markers for sperm dysfunction, and melatonin may be useful in improving sperm quality and overall male fertility.